Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
# TODO:
#
import glob
from os import makedirs, mkdir
from os.path import join, exists
import pandas as pd
import numpy as np
import json
import ipdb
import re
import pickle
import sys
import time
from zipfile import ZipFile
from joblib import dump, load
import argparse
from datetime import datetime, timedelta, timezone, timedelta
import pytz
import matplotlib.pyplot as plt
from functools import partial
from collections import Counter
from itertools import repeat, chain, combinations
from multiprocessing import Pool, cpu_count
import tensorflow as tf
from sklearn.decomposition import PCA
from sklearn.preprocessing import StandardScaler, MinMaxScaler, OneHotEncoder
from sklearn.preprocessing import PolynomialFeatures, LabelEncoder
from sklearn.model_selection import KFold, train_test_split
from sklearn.metrics import accuracy_score
from tsfresh.feature_extraction import extract_features
from tsfresh.feature_extraction import settings as tsfresh_settings
from tsfresh.utilities.string_manipulation import get_config_from_string
from modules.datapipeline import get_file_list, load_and_snip, load_data, \
load_split_data, load_harness_data
from modules.digitalsignalprocessing import vectorized_slide_win as vsw
from modules.digitalsignalprocessing import imu_signal_processing
from modules.digitalsignalprocessing import bvp_signal_processing
from modules.digitalsignalprocessing import hernandez_sp, reject_artefact
from modules.digitalsignalprocessing import do_pad_fft,\
pressure_signal_processing, infer_frequency, movingaverage
from modules.utils import *
from modules.evaluations import Evaluation
from modules.datapipeline import get_windowed_data, DataSynchronizer,\
parallelize_dataframe
from modules.datapipeline import ProjectFileHandler
from models.ardregression import ARDRegressionClass
from models.knn import KNNClass
from models.svm import SVMClass
from models.lda import LDAClass
from models.svr import SVRClass
from models.logisticregression import LogisticRegressionClass
from models.linearregression import LinearRegressionClass
from models.neuralnet import FNN_HyperModel, LSTM_HyperModel, TunerClass,\
CNN1D_HyperModel
from models.ridgeclass import RidgeClass
from models.resnet import Regressor_RESNET, Classifier_RESNET
from models.xgboostclass import XGBoostClass
from pprint import PrettyPrinter
from sktime.transformations.panel.rocket import (
MiniRocket,
MiniRocketMultivariate,
MiniRocketMultivariateVariable,
)
from config import WINDOW_SIZE, WINDOW_SHIFT, IMU_FS, DATA_DIR, BR_FS\
, FS_RESAMPLE, PPG_FS
from regress_rr import *
N_SUBJECT_MAX = 6
IMU_COLS = ['acc_x', 'acc_y', 'acc_z', 'gyro_x', 'gyro_y', 'gyro_z']
def load_and_sync_xsens(subject, sens_list:list=['imu', 'bvp']):
"""
Loads requested sensors from the subject folder and synchronises each to
the beginning and end timestamps. Linearly interpolates the data and
timestamps to match the higher frequency data.
Arguments
---------
subject : str
subject to extract data from (i.e. 'Pilot02', 'S02')
sens_list : list
a list that contains either or both 'imu' and 'bvp'
Returns
-------
pd.DataFrame
"""
assert 'imu' in sens_list or 'bvp' in sens_list, \
f"{sens_list} is not supported, must contain"\
"'imu', 'bvp' or 'imu, bvp'"
pss_df, br_df, imu_df, bvp_df = None, None, None, None
acc_data, gyr_data, bvp_data = None, None, None
# load imu
if 'imu' in sens_list:
imu_list = get_file_list('imudata.gz', sbj=subject)
imu_df_all, imu_hdr_df_all = load_imu_files(imu_list)
# load bioharness
pss_list = get_file_list('*Breathing.csv', sbj=subject)
if len(pss_list) == 0:
pss_list = get_file_list('BR*.csv', sbj=subject)
br_list = get_file_list('*Summary*.csv', sbj=subject)
# load e4 wristband
if 'bvp' in sens_list:
e4_list = get_file_list('*.zip', sbj=subject)
bvp_df_all, bvp_hdr = load_e4_files(e4_list)
bvp_fs = bvp_hdr[0]['fs']
xsens_list = []
# skip the first and last x minute(s)
minutes_to_skip = .5
br_skiprows = br_skipfooter = int(minutes_to_skip*60)
pss_skiprows = pss_skipfooter = int(minutes_to_skip*60*BR_FS)
# load each bioharness file and sync the imu to it
for pss_file, br_file in zip(pss_list, br_list):
xsens_data = {}
pss_df = load_bioharness_file(pss_file, skiprows=pss_skiprows,
skipfooter=pss_skipfooter,
engine='python')
pss_time = pss_df['Time'].map(bioharness_datetime_to_seconds).values\
.reshape(-1, 1)
pss_df['sec'] = pss_time
br_df = load_bioharness_file(br_file, skiprows=br_skiprows,
skipfooter=br_skipfooter,
engine='python')
br_time = br_df['Time'].map(bioharness_datetime_to_seconds).values\
.reshape(-1, 1)
br_df['sec'] = br_time
# sync
if 'imu' in sens_list and 'bvp' in sens_list:
br_df, imu_df = sync_to_ref(br_df, imu_df_all.copy())
pss_df, _ = sync_to_ref(pss_df, imu_df_all.copy())
bvp_df, _ = sync_to_ref(bvp_df_all.copy(), pss_df.copy())
elif 'imu' in sens_list and not 'bvp' in sens_list:
br_df, imu_df = sync_to_ref(br_df, imu_df_all.copy())
pss_df, _ = sync_to_ref(pss_df, imu_df_all.copy())
elif not 'imu' in sens_list and 'bvp' in sens_list:
br_df, bvp_df = sync_to_ref(br_df, bvp_df_all.copy())
pss_df, _ = sync_to_ref(pss_df, bvp_df_all.copy())
# extract relevant data
if 'imu' in sens_list:
axes = ['x', 'y', 'z']
acc_data = np.stack(imu_df['accelerometer'].values)
gyr_data = np.stack(imu_df['gyroscope'].values)
x_time = imu_df['sec'].values.reshape(-1, 1)
if 'bvp' in sens_list and 'imu' in sens_list:
bvp_data = bvp_df['bvp'].values
bvp_data = np.interp(x_time, bvp_df['sec'].values, bvp_data)\
.reshape(-1, 1)
elif 'bvp' in sens_list and not 'imu' in sens_list:
bvp_data = bvp_df['bvp'].values
x_time = bvp_df['sec'].values
xsens_data['sec'] = x_time.flatten()
br_col = [col for col in pss_df.columns.values if\
'breathing' in col.lower()][0]
pss_data = pss_df[br_col].values
pss_data = np.interp(x_time, pss_df['sec'].values, pss_data)\
.reshape(-1, 1)
xsens_data['PSS'] = pss_data.flatten()
br_lbl = [col for col in br_df.columns.values if\
'br' in col.lower()][0]
br_data = br_df['BR'].values
br_data = np.interp(x_time, br_df['sec'].values, br_data)\
.reshape(-1, 1)
xsens_data['BR'] = br_data.flatten()
if 'imu' in sens_list:
for i, axis in enumerate(axes):
xsens_data['acc_'+axis] = acc_data.T[i].flatten()
xsens_data['gyro_'+axis] = gyr_data.T[i].flatten()
if 'bvp' in sens_list:
xsens_data['bvp'] = bvp_data.flatten()
xsens_df_tmp = pd.DataFrame(xsens_data)
xsens_list.append(xsens_df_tmp)
if len(xsens_list) > 1:
xsens_df = pd.concat(xsens_list, axis=0, ignore_index=True)
xsens_df.reset_index(drop=True, inplace=True)
else:
xsens_df = xsens_list[0]
return xsens_df
def get_test_data(cal_df, activity_df, xsens_df, test_standing):
"""
Loads and retrieves the activity timestamps from sitting and standing
events
Arguments
---------
cal_df : pandas.DataFrame
synchronised and frequency matched respiration calibration data
activity_df : pandas.DataFrame
timestamps of activity events
xsens_df : pandas.DataFrame
synchronised and frequency matched DataFrame with all data and labels
test_standing : bool
list of column str
Returns
-------
pd.DataFrame
"""
fmt = "%d/%m/%Y %H:%M:%S"
start_time = cal_df.iloc[0]['data'].sec.values[0]
data_df = xsens_df[xsens_df.sec < start_time]
activity_start = 0
activity_end = 0
activity_list = []
for index, row in activity_df.iterrows():
sec = datetime.strptime(row['Timestamps'], fmt).timestamp()
if not test_standing and row['Activity'] == 'standing':
continue
if row['Event'] == 'start':
activity_start = sec
elif row['Event'] == 'end':
activity_stop = sec
dsync = DataSynchronizer()
dsync.set_bounds(data_df['sec'].values, activity_start,
activity_stop)
sync_df = dsync.sync_df(data_df.copy())
activity_data = {'activity': row['Activity'], 'data': sync_df}
activity_list.append(activity_data)
return pd.DataFrame(activity_list)
def sens_rr_model(subject='S02-repeat',
window_size=12,
window_shift=0.2,
lbl_str='pss',
mdl_str='linreg',
overwrite=False,
feature_method='minirocket',
train_len:int=5,
test_standing=True,
data_input:str='imu',
):
"""Loads, preprocesses, and trains a select model using the configured
settings.
Attributes
----------
subject: str
specify the subject code (i.e. 'Pilot02', 'S02')
window_size : float
a numpy array of the respiration rate ground truth values from the
bioharness
window_shift : float
a portion of the window size between 0 and 1
mdl_str : str
a string to infoa portion of the window size between 0 and 1rm what model was used
overwrite : bool
overwrites the evaluations, models, and graphs (default False)
feature_method : str
choose between 'minirocket', 'tsfresh', or 'None'
train_len : int
number of minutes to sample from, choose between 1 to 7
test_standing : bool
boolean to use standing data
data_input : str
sensors to use, choose from 'imu', 'bvp', 'imu+bvp'
Returns
------
None
"""
cal_str = 'cpm'
tmp = []
imu_cols = IMU_COLS
bvp_cols = ['bvp']
if 'imu' in data_input and 'bvp' in data_input:
data_cols = ['acc_x', 'acc_y', 'acc_z',
'gyro_x', 'gyro_y', 'gyro_z',
'bvp']
parent_directory_string = "imu-bvp_rr"
data_input = 'imu+bvp'
sens_list = ['imu', 'bvp']
fs = IMU_FS
elif 'imu' in data_input and not 'bvp' in data_input:
data_cols = ['acc_x', 'acc_y', 'acc_z',
'gyro_x', 'gyro_y', 'gyro_z',]
parent_directory_string = "imu_rr"
sens_list = ['imu']
fs = IMU_FS
elif not 'imu' in data_input and 'bvp' in data_input:
data_cols = ['bvp']
parent_directory_string = "bvp_rr"
sens_list = ['bvp']
fs = PPG_FS
do_minirocket = False
use_tsfresh = False
overwrite_tsfresh = overwrite
train_size = int(train_len)
minirocket = None
if feature_method == 'tsfresh':
use_tsfresh = True
elif feature_method == 'minirocket':
do_minirocket = True
config = {'window_size' : window_size,
'window_shift' : window_shift,
'lbl_str' : lbl_str,
'do_minirocket' : do_minirocket,
'use_tsfresh' : use_tsfresh,
'train_len' : train_len,
'test_standing' : test_standing,
'sens_list' : data_input
}
pfh = ProjectFileHandler(config)
pfh.set_home_directory(join(DATA_DIR, 'subject_specific', '_'+subject))
pfh.set_parent_directory(parent_directory_string)
id_check = pfh.get_id_from_config()
if id_check is None:
pfh.set_project_directory()
pfh.save_metafile()
else:
pfh.set_id(int(id_check))
pfh.set_project_directory()
print('Using pre-set data id: ', pfh.fset_id)
project_dir = pfh.project_directory
xsens_df = load_and_sync_xsens(subject, sens_list=sens_list)
activity_df = get_activity_log(subject).reset_index(drop=True)
activity_df.drop([16, 17], inplace=True)
event_df = get_respiration_log(subject).iloc[-14:]
cal_df = get_cal_data(event_df, xsens_df)
day0_event_df = get_respiration_log("S02")
second_cal_df = get_cal_data(day0_event_df, xsens_df)
# include standing or not
test_df_tmp = get_test_data(cal_df, activity_df, xsens_df, test_standing)
test_df = pd.concat([df for df in test_df_tmp['data']], axis=0)
if use_tsfresh:
cal_df_list = []
test_df = load_tsfresh(test_df,
pfh.home_directory,
window_size=window_size,
window_shift=window_shift,
fs=fs,
overwrite=overwrite_tsfresh,
data_cols=data_cols,
prefix='test',
)
for index, row in cal_df.iterrows():
data = load_tsfresh(row['data'],
pfh.home_directory,
window_size=window_size,
window_shift=window_shift,
fs=fs,
overwrite=overwrite_tsfresh,
data_cols=data_cols,
prefix=f"calcpm_{row['cpm']}"
)
cal_df_list.append({'cpm': row['cpm'], 'data': data})
cal_df = pd.DataFrame(cal_df_list)
else:
x_test_df, y_test_df = get_df_windows(
test_df, df_win_task, window_size=window_size,
window_shift=window_shift, fs=fs, cols=data_cols)
my_df = []
cal_inds = {}
for i in range(len(second_cal_df)):
df = second_cal_df.iloc[i]
data_df = df['data']
data_df['cpm'] = df.cpm
my_df.append(data_df)
my_df = pd.concat(my_df)
for combi in combinations(cal_df[cal_str].values, train_len):
combi_str = "-".join([str(x) for x in combi])
pfh.config[cal_str] = combi_str
marker = f'{parent_directory_string}_{subject}_id{pfh.fset_id}'\
f'_combi{combi_str}'
print(marker)
train_df_list = []
for cpm in combi:
df = cal_df[cal_df[cal_str] == cpm]
data_df = df['data'].iloc[0]
data_df['cpm'] = cpm
train_df_list.append(data_df)
train_df = pd.concat(train_df_list)
assert np.isin(train_df.sec.values, test_df.sec.values).any()==False,\
"overlapping test and train data"
print("train")
print(train_df.shape)
print("test")
print(test_df.shape)
if do_minirocket:
x_train_df, y_train_df = get_df_windows(train_df,
df_win_task,
window_size=window_size,
window_shift=window_shift,
fs=fs,
cols=data_cols
)
x_train = make_windows_from_id(x_train_df, data_cols)
y_train = y_train_df['cpm'].values.reshape(-1, 1)
x_test = make_windows_from_id(x_test_df, data_cols)
y_test = y_test_df[lbl_str].values.reshape(-1, 1)
# x_train = y_train_df['hr_est'].values.reshape(-1, 1)
# x_test = y_test_df['hr_est'].values.reshape(-1, 1)
x_train = np.swapaxes(x_train, 1, 2)
x_test = np.swapaxes(x_test, 1, 2)
directory = join(project_dir, '_'.join([mdl_str, marker]))
minirocket_fname = join(directory, "minirocket.joblib")
if not overwrite and exists(minirocket_fname):
with open(minirocket_fname, 'rb') as mfile:
minirocket = load(mfile)
x_train = minirocket.transform(x_train)
print("loaded minirocket...")
else:
minirocket = MiniRocketMultivariate()
x_train = minirocket.fit_transform(x_train)
x_test = minirocket.transform(x_test)
if overwrite or not exists(minirocket_fname):
if not exists(directory): makedirs(directory)
with open(minirocket_fname, 'wb') as mfile:
dump(minirocket, mfile)
print("saved new minirocket...")
elif use_tsfresh:
y_cols = ['sec', 'br', 'pss', 'cpm']
x_cols = [col for col in train_df.columns.values if col not in y_cols]
x_train = train_df[x_cols].values
y_train = train_df['cpm'].values.reshape(-1, 1)
x_test = test_df[x_cols].values
y_test = test_df[lbl_str].values.reshape(-1, 1)
y_test_df = test_df[y_cols[:-1]]
else:
x_train_df, y_train_df = get_df_windows(train_df,
df_win_task,
window_size=window_size,
window_shift=window_shift,
fs=fs,
cols=data_cols,
)
x_train = make_windows_from_id(x_train_df, data_cols)
x_test = make_windows_from_id(x_test_df, data_cols)
y_train = y_train_df['cpm'].values.reshape(-1, 1)
y_test = y_test_df[lbl_str].values.reshape(-1, 1)
transforms, model = model_training(mdl_str, x_train, y_train,
marker, validation_data=None,
overwrite=overwrite,
is_regression=True,
project_directory=project_dir,
window_size=int(window_size*fs),
extra_train=200,
poly_deg=1
)
if transforms is not None:
x_test = transforms.transform(x_test)
preds = model.predict(x_test)
eval_handle = EvalHandler(y_test.flatten(), preds.flatten(), subject,
pfh, mdl_str, overwrite=overwrite)
eval_handle.update_eval_history()
eval_handle.save_eval_history()
pp = PrettyPrinter()
pp.pprint(eval_handle.load_eval_history())
fig, ax = plt.subplots(2, 1, figsize=(7.3, 4.5))
fig_title = '_'.join([mdl_str, data_input, subject]+[combi_str])
fig.suptitle(fig_title)
ax[0].plot(y_test)
ax[0].plot(preds)
ax[0].set_title('raw')
if lbl_str == 'pss':
br = y_test_df['br'].values
ax[1].plot(movingaverage(y_test, 12), color='tab:blue')
ax[1].plot(br, 'k')
ax[1].plot(movingaverage(preds, 12), color='tab:orange')
ax[1].legend([lbl_str, 'br', 'pred'])
else:
ax[1].plot(y_test, 'k')
ax[1].plot(movingaverage(preds, 12), color='tab:orange')
ax[1].legend([lbl_str, 'pred'])
ax[1].set_title('smoothened')
fig_dir = join(project_dir, 'figures')
if not exists(fig_dir): mkdir(fig_dir)
fig.savefig(join(fig_dir, fig_title+".png"))
# make PSS to lbls and preprocess data
if do_minirocket:
x_df, y_df = get_df_windows(my_df,
df_win_task,
window_size=window_size,
window_shift=window_shift,
fs=fs,
cols=data_cols
)
x = make_windows_from_id(x_df, data_cols)
y = y_df['pss'].values.reshape(-1, 1)
x = np.swapaxes(x, 1, 2)
# load and process
x = minirocket.transform(x)
elif use_tsfresh:
y_cols = ['sec', 'br', 'pss', 'cpm']
x_cols = [col for col in train_df.columns.values if col not in y_cols]
x = my_df[x_cols].values
y = my_df['pss'].values.reshape(-1, 1)
else:
x_df, y_df = get_df_windows(my_df,
df_win_task,
window_size=window_size,
window_shift=window_shift,
fs=fs,
cols=data_cols,
)
x = make_windows_from_id(x_df, data_cols)
y = y_df['pss'].values.reshape(-1, 1)
if transforms is not None:
x = transforms.transform(x)
preds = model.predict(x)
fig2, ax2 = plt.subplots()
ax2.plot(y)
ax2.plot(preds)
ax2.plot(y_df.cpm.values, '--')
ax2.legend(['label', 'pred', 'cpm'])
ax2.set_title("second day mapped to first day cal")
fig2.savefig(join(fig_dir, fig_title+"cal_check.png"))
plt.close('all')
sens_rr_model(subject='S02-repeat',
window_size=12,
window_shift=0.2,
lbl_str='pss',
mdl_str='cnn1d',
overwrite=False,
feature_method=None,
# feature_method='minirocket',
train_len=5,
test_standing=True,
data_input='bvp',
)