# TODO: 
    # 

import glob
from os import makedirs, mkdir
from os.path import join, exists
import pandas as pd
import numpy as np
import json
import ipdb
import re
import pickle
import sys
import time
from zipfile import ZipFile
from joblib import dump, load

import argparse
from datetime import datetime, timedelta, timezone, timedelta
import pytz

import matplotlib.pyplot as plt
from functools import partial
from collections import Counter
from itertools import repeat, chain, combinations
from multiprocessing import Pool, cpu_count
import tensorflow as tf

from sklearn.decomposition import PCA
from sklearn.preprocessing import StandardScaler, MinMaxScaler, OneHotEncoder
from sklearn.preprocessing import PolynomialFeatures, LabelEncoder
from sklearn.model_selection import KFold, train_test_split
from sklearn.metrics import accuracy_score

from tsfresh.feature_extraction import extract_features
from tsfresh.feature_extraction import settings as tsfresh_settings
from tsfresh.utilities.string_manipulation import get_config_from_string

from modules.datapipeline import get_file_list, load_and_snip, load_data, \
        load_split_data, load_harness_data
from modules.digitalsignalprocessing import vectorized_slide_win as vsw
from modules.digitalsignalprocessing import imu_signal_processing
from modules.digitalsignalprocessing import bvp_signal_processing
from modules.digitalsignalprocessing import hernandez_sp, reject_artefact
from modules.digitalsignalprocessing import do_pad_fft,\
        pressure_signal_processing, infer_frequency, movingaverage
from modules.utils import *

from modules.evaluations import Evaluation
from modules.datapipeline import get_windowed_data, DataSynchronizer,\
        parallelize_dataframe
from modules.datapipeline import ProjectFileHandler
from models.ardregression import ARDRegressionClass
from models.knn import KNNClass
from models.svm import SVMClass
from models.lda import LDAClass
from models.svr import SVRClass
from models.logisticregression import LogisticRegressionClass
from models.linearregression import LinearRegressionClass
from models.neuralnet import FNN_HyperModel, LSTM_HyperModel, TunerClass,\
        CNN1D_HyperModel
from models.ridgeclass import RidgeClass
from models.resnet import Regressor_RESNET, Classifier_RESNET
from models.xgboostclass import XGBoostClass

from pprint import PrettyPrinter

from sktime.transformations.panel.rocket import (
        MiniRocket,
        MiniRocketMultivariate,
        MiniRocketMultivariateVariable,
)

from config import WINDOW_SIZE, WINDOW_SHIFT, IMU_FS, DATA_DIR, BR_FS\
        , FS_RESAMPLE, PPG_FS

from regress_rr import *

N_SUBJECT_MAX = 6
IMU_COLS =  ['acc_x', 'acc_y', 'acc_z', 'gyro_x', 'gyro_y', 'gyro_z']


def load_and_sync_xsens(subject, sens_list:list=['imu', 'bvp']):
    """
    Loads requested sensors from the subject folder and synchronises each to
    the beginning and end timestamps. Linearly interpolates the data and 
    timestamps to match the higher frequency data.

    Arguments
    ---------
    subject : str
        subject to extract data from (i.e. 'Pilot02', 'S02')
    sens_list : list
        a list that contains either or both 'imu' and 'bvp'
    
    Returns
    -------
    pd.DataFrame
    """
    assert 'imu' in sens_list or 'bvp' in sens_list, \
            f"{sens_list} is not supported, must contain"\
            "'imu', 'bvp' or 'imu, bvp'"

    pss_df, br_df, imu_df, bvp_df = None, None, None, None
    acc_data, gyr_data, bvp_data = None, None, None
    # load imu
    if 'imu' in sens_list:
        imu_list = get_file_list('imudata.gz', sbj=subject)
        imu_df_all, imu_hdr_df_all = load_imu_files(imu_list)

    # load bioharness
    pss_list = get_file_list('*Breathing.csv', sbj=subject)
    if len(pss_list) == 0:
        pss_list = get_file_list('BR*.csv', sbj=subject)

    br_list = get_file_list('*Summary*.csv', sbj=subject)

    # load e4 wristband
    if 'bvp' in sens_list:
        e4_list = get_file_list('*.zip', sbj=subject)
        bvp_df_all, bvp_hdr = load_e4_files(e4_list)
        bvp_fs = bvp_hdr[0]['fs']

    xsens_list = []
    # skip the first and last x minute(s)
    minutes_to_skip = .5
    br_skiprows = br_skipfooter = int(minutes_to_skip*60)
    pss_skiprows = pss_skipfooter = int(minutes_to_skip*60*BR_FS)

    # load each bioharness file and sync the imu to it
    for pss_file, br_file in zip(pss_list, br_list):
        xsens_data = {}

        pss_df = load_bioharness_file(pss_file, skiprows=pss_skiprows,
                                      skipfooter=pss_skipfooter,
                                      engine='python')
        pss_time = pss_df['Time'].map(bioharness_datetime_to_seconds).values\
                .reshape(-1, 1)
        pss_df['sec'] = pss_time

        br_df = load_bioharness_file(br_file, skiprows=br_skiprows,
                                     skipfooter=br_skipfooter,
                                     engine='python')
        br_time = br_df['Time'].map(bioharness_datetime_to_seconds).values\
                .reshape(-1, 1)
        br_df['sec'] = br_time

        # sync
        if 'imu' in sens_list and 'bvp' in sens_list:
            br_df, imu_df = sync_to_ref(br_df, imu_df_all.copy())
            pss_df, _ = sync_to_ref(pss_df, imu_df_all.copy())
            bvp_df, _ = sync_to_ref(bvp_df_all.copy(), pss_df.copy())
        elif 'imu' in sens_list and not 'bvp' in sens_list:
            br_df, imu_df = sync_to_ref(br_df, imu_df_all.copy())
            pss_df, _ = sync_to_ref(pss_df, imu_df_all.copy())
        elif not 'imu' in sens_list and 'bvp' in sens_list:
            br_df, bvp_df = sync_to_ref(br_df, bvp_df_all.copy())
            pss_df, _ = sync_to_ref(pss_df, bvp_df_all.copy())

        # extract relevant data
        if 'imu' in sens_list:
            axes = ['x', 'y', 'z']
            acc_data = np.stack(imu_df['accelerometer'].values)
            gyr_data = np.stack(imu_df['gyroscope'].values)
            x_time = imu_df['sec'].values.reshape(-1, 1)

        if 'bvp' in sens_list and 'imu' in sens_list:
            bvp_data = bvp_df['bvp'].values
            bvp_data = np.interp(x_time, bvp_df['sec'].values, bvp_data)\
                    .reshape(-1, 1)
        elif 'bvp' in sens_list and not 'imu' in sens_list:
            bvp_data = bvp_df['bvp'].values
            x_time = bvp_df['sec'].values

        xsens_data['sec'] = x_time.flatten()

        br_col = [col for col in pss_df.columns.values if\
                  'breathing' in col.lower()][0]
        pss_data = pss_df[br_col].values
        pss_data = np.interp(x_time, pss_df['sec'].values, pss_data)\
                .reshape(-1, 1)
        xsens_data['PSS'] = pss_data.flatten()

        br_lbl = [col for col in br_df.columns.values if\
                  'br' in col.lower()][0]
        br_data = br_df['BR'].values
        br_data = np.interp(x_time, br_df['sec'].values, br_data)\
                .reshape(-1, 1)
        xsens_data['BR'] = br_data.flatten()

        if 'imu' in sens_list:
            for i, axis in enumerate(axes):
                xsens_data['acc_'+axis] = acc_data.T[i].flatten()
                xsens_data['gyro_'+axis] = gyr_data.T[i].flatten()

        if 'bvp' in sens_list:
            xsens_data['bvp'] = bvp_data.flatten()

        xsens_df_tmp = pd.DataFrame(xsens_data)

        xsens_list.append(xsens_df_tmp)

    if len(xsens_list) > 1:
        xsens_df = pd.concat(xsens_list, axis=0, ignore_index=True)
        xsens_df.reset_index(drop=True, inplace=True)
    else:
        xsens_df = xsens_list[0]

    return xsens_df

def get_test_data(cal_df, activity_df, xsens_df, test_standing):
    """
    Loads and retrieves the activity timestamps from sitting and standing
    events

    Arguments
    ---------
    cal_df : pandas.DataFrame
        synchronised and frequency matched respiration calibration data
    activity_df : pandas.DataFrame
        timestamps of activity events
    xsens_df : pandas.DataFrame
        synchronised and frequency matched DataFrame with all data and labels
    test_standing : bool
        list of column str
    
    Returns
    -------
    pd.DataFrame
    """

    fmt = "%d/%m/%Y %H:%M:%S"
    start_time = cal_df.iloc[0]['data'].sec.values[0]
    data_df = xsens_df[xsens_df.sec < start_time]
    activity_start = 0
    activity_end = 0

    activity_list = []

    for index, row in activity_df.iterrows():
        sec = datetime.strptime(row['Timestamps'], fmt).timestamp()
        if not test_standing and row['Activity'] == 'standing':
            continue
        if row['Event'] == 'start':
            activity_start = sec
        elif row['Event'] == 'end':
            activity_stop = sec

            dsync = DataSynchronizer()
            dsync.set_bounds(data_df['sec'].values, activity_start,
                             activity_stop)

            sync_df = dsync.sync_df(data_df.copy())
            activity_data = {'activity': row['Activity'], 'data': sync_df}
            activity_list.append(activity_data)

    return pd.DataFrame(activity_list)

def sens_rr_model(subject='S02-repeat',
                  window_size=12,
                  window_shift=0.2,
                  lbl_str='pss',
                  mdl_str='linreg',
                  overwrite=False,
                  feature_method='minirocket',
                  train_len:int=5,
                  test_standing=True,
                  data_input:str='imu',
                 ):
    """Loads, preprocesses, and trains a select model using the configured
    settings.
    Attributes
    ----------
    subject: str
        specify the subject code (i.e. 'Pilot02', 'S02')
    window_size : float
        a numpy array of the respiration rate ground truth values from the
        bioharness
    window_shift : float
        a portion of the window size between 0 and 1
    mdl_str : str
        a string to infoa portion of the window size between 0 and 1rm what model was used
    overwrite : bool
        overwrites the evaluations, models, and graphs (default False)
    feature_method : str
        choose between 'minirocket', 'tsfresh', or 'None'
    train_len : int
        number of minutes to sample from, choose between 1 to 7
    test_standing : bool
        boolean to use standing data
    data_input : str
        sensors to use, choose from 'imu', 'bvp', 'imu+bvp'

    Returns
    ------
    None
    """
    cal_str = 'cpm'
    tmp = []
    imu_cols = IMU_COLS
    bvp_cols = ['bvp']
    if 'imu' in data_input and 'bvp' in data_input:
        data_cols = ['acc_x', 'acc_y', 'acc_z',
                     'gyro_x', 'gyro_y', 'gyro_z',
                     'bvp']
        parent_directory_string = "imu-bvp_rr"
        data_input = 'imu+bvp'
        sens_list = ['imu', 'bvp']
        fs = IMU_FS
    elif 'imu' in data_input and not 'bvp' in data_input:
        data_cols = ['acc_x', 'acc_y', 'acc_z',
                     'gyro_x', 'gyro_y', 'gyro_z',]
        parent_directory_string = "imu_rr"
        sens_list = ['imu']
        fs = IMU_FS
    elif not 'imu' in data_input and 'bvp' in data_input:
        data_cols = ['bvp']
        parent_directory_string = "bvp_rr"
        sens_list = ['bvp']
        fs = PPG_FS

    do_minirocket = False
    use_tsfresh   = False
    overwrite_tsfresh = overwrite
    train_size = int(train_len)
    minirocket = None

    if feature_method == 'tsfresh':
        use_tsfresh = True
    elif feature_method == 'minirocket':
        do_minirocket = True

    config = {'window_size'   : window_size,
              'window_shift'  : window_shift,
              'lbl_str'       : lbl_str,
              'do_minirocket' : do_minirocket,
              'use_tsfresh'   : use_tsfresh,
              'train_len'     : train_len,
              'test_standing' : test_standing,
              'sens_list'     : data_input
             }

    pfh = ProjectFileHandler(config)
    pfh.set_home_directory(join(DATA_DIR, 'subject_specific', '_'+subject))
    pfh.set_parent_directory(parent_directory_string)
    id_check = pfh.get_id_from_config()
    if id_check is None:
        pfh.set_project_directory()
        pfh.save_metafile()
    else:
        pfh.set_id(int(id_check))
        pfh.set_project_directory()
        print('Using pre-set data id: ', pfh.fset_id)
    project_dir = pfh.project_directory

    xsens_df = load_and_sync_xsens(subject, sens_list=sens_list)
    activity_df = get_activity_log(subject).reset_index(drop=True)
    activity_df.drop([16, 17], inplace=True)
    event_df = get_respiration_log(subject).iloc[-14:]
    cal_df = get_cal_data(event_df, xsens_df)

    day0_event_df = get_respiration_log("S02")
    second_cal_df = get_cal_data(day0_event_df, xsens_df)

    # include standing or not
    test_df_tmp = get_test_data(cal_df, activity_df, xsens_df, test_standing)
    test_df = pd.concat([df for df in test_df_tmp['data']], axis=0)

    if use_tsfresh:
        cal_df_list = []
        test_df = load_tsfresh(test_df,
                               pfh.home_directory,
                               window_size=window_size,
                               window_shift=window_shift,
                               fs=fs,
                               overwrite=overwrite_tsfresh,
                               data_cols=data_cols,
                               prefix='test',
                              )
        for index, row in cal_df.iterrows():
            data = load_tsfresh(row['data'],
                                pfh.home_directory,
                                window_size=window_size,
                                window_shift=window_shift,
                                fs=fs,
                                overwrite=overwrite_tsfresh,
                                data_cols=data_cols,
                                prefix=f"calcpm_{row['cpm']}"
                               )
            cal_df_list.append({'cpm': row['cpm'], 'data': data})

        cal_df = pd.DataFrame(cal_df_list)
    else:
        x_test_df, y_test_df = get_df_windows(
            test_df, df_win_task, window_size=window_size,
            window_shift=window_shift, fs=fs, cols=data_cols)

    my_df = []
    cal_inds = {}
    for i in range(len(second_cal_df)):
        df = second_cal_df.iloc[i]
        data_df = df['data']
        data_df['cpm'] = df.cpm

        my_df.append(data_df)
    my_df = pd.concat(my_df)


    for combi in combinations(cal_df[cal_str].values, train_len):
        combi_str = "-".join([str(x) for x in combi])
        pfh.config[cal_str] = combi_str
        marker = f'{parent_directory_string}_{subject}_id{pfh.fset_id}'\
                f'_combi{combi_str}'
        print(marker)

        train_df_list = []
        for cpm in combi:
            df = cal_df[cal_df[cal_str] == cpm]
            data_df = df['data'].iloc[0]
            data_df['cpm'] = cpm
            train_df_list.append(data_df)
        train_df = pd.concat(train_df_list)

        assert np.isin(train_df.sec.values, test_df.sec.values).any()==False,\
                "overlapping test and train data"

        print("train")
        print(train_df.shape)
        print("test")
        print(test_df.shape)

        if do_minirocket:
            x_train_df, y_train_df = get_df_windows(train_df,
                                                    df_win_task,
                                                    window_size=window_size,
                                                    window_shift=window_shift,
                                                    fs=fs,
                                                    cols=data_cols
                                                   )

            x_train = make_windows_from_id(x_train_df, data_cols)
            y_train = y_train_df['cpm'].values.reshape(-1, 1)
            x_test  = make_windows_from_id(x_test_df, data_cols)
            y_test  = y_test_df[lbl_str].values.reshape(-1, 1)
    
            # x_train = y_train_df['hr_est'].values.reshape(-1, 1)
            # x_test  = y_test_df['hr_est'].values.reshape(-1, 1)
            x_train = np.swapaxes(x_train, 1, 2)
            x_test = np.swapaxes(x_test, 1, 2)

            directory = join(project_dir, '_'.join([mdl_str, marker]))
            minirocket_fname = join(directory, "minirocket.joblib")

            if not overwrite and exists(minirocket_fname):
                with open(minirocket_fname, 'rb') as mfile:
                    minirocket = load(mfile)
                x_train    = minirocket.transform(x_train)
                print("loaded minirocket...")
            else:
                minirocket = MiniRocketMultivariate()
                x_train    = minirocket.fit_transform(x_train)

            x_test     = minirocket.transform(x_test)

            if overwrite or not exists(minirocket_fname):
                if not exists(directory): makedirs(directory)
                with open(minirocket_fname, 'wb') as mfile:
                    dump(minirocket, mfile)
                print("saved new minirocket...")

        elif use_tsfresh:
            y_cols = ['sec', 'br', 'pss', 'cpm']
            x_cols = [col for col in train_df.columns.values if col not in y_cols]
            x_train = train_df[x_cols].values
            y_train = train_df['cpm'].values.reshape(-1, 1)
            x_test  = test_df[x_cols].values
            y_test  = test_df[lbl_str].values.reshape(-1, 1)
            y_test_df = test_df[y_cols[:-1]]
        else:
            x_train_df, y_train_df = get_df_windows(train_df,
                                                    df_win_task,
                                                    window_size=window_size,
                                                    window_shift=window_shift,
                                                    fs=fs,
                                                    cols=data_cols,
                                                   )
            x_train = make_windows_from_id(x_train_df, data_cols)
            x_test  = make_windows_from_id(x_test_df, data_cols)
            y_train = y_train_df['cpm'].values.reshape(-1, 1)
            y_test  = y_test_df[lbl_str].values.reshape(-1, 1)

        transforms, model = model_training(mdl_str, x_train, y_train,
                                           marker, validation_data=None,
                                           overwrite=overwrite,
                                           is_regression=True,
                                           project_directory=project_dir,
                                           window_size=int(window_size*fs),
                                           extra_train=200,
                                           poly_deg=1
                                          )

        if transforms is not None:
            x_test = transforms.transform(x_test)

        preds = model.predict(x_test)

        eval_handle = EvalHandler(y_test.flatten(), preds.flatten(), subject,
                                  pfh, mdl_str, overwrite=overwrite)
        eval_handle.update_eval_history()
        eval_handle.save_eval_history()

        pp = PrettyPrinter()
        pp.pprint(eval_handle.load_eval_history())

        fig, ax = plt.subplots(2, 1, figsize=(7.3, 4.5))
        fig_title = '_'.join([mdl_str, data_input, subject]+[combi_str])
        fig.suptitle(fig_title)
        ax[0].plot(y_test)
        ax[0].plot(preds)
        ax[0].set_title('raw')

        if lbl_str == 'pss':
            br  = y_test_df['br'].values
            ax[1].plot(movingaverage(y_test, 12), color='tab:blue')
            ax[1].plot(br, 'k')
            ax[1].plot(movingaverage(preds, 12), color='tab:orange')
            ax[1].legend([lbl_str, 'br', 'pred'])
        else:
            ax[1].plot(y_test, 'k')
            ax[1].plot(movingaverage(preds, 12), color='tab:orange')
            ax[1].legend([lbl_str, 'pred'])
        ax[1].set_title('smoothened')
        fig_dir = join(project_dir, 'figures')
        if not exists(fig_dir): mkdir(fig_dir)
        fig.savefig(join(fig_dir, fig_title+".png"))

        # make PSS to lbls and preprocess data
        if do_minirocket:
            x_df, y_df = get_df_windows(my_df,
                                        df_win_task,
                                        window_size=window_size,
                                        window_shift=window_shift,
                                        fs=fs,
                                        cols=data_cols
                                       )

            x = make_windows_from_id(x_df, data_cols)
            y = y_df['pss'].values.reshape(-1, 1)
            x = np.swapaxes(x, 1, 2)

            # load and process
            x = minirocket.transform(x)

        elif use_tsfresh:
            y_cols = ['sec', 'br', 'pss', 'cpm']
            x_cols = [col for col in train_df.columns.values if col not in y_cols]
            x = my_df[x_cols].values
            y = my_df['pss'].values.reshape(-1, 1)
        else:
            x_df, y_df = get_df_windows(my_df,
                                        df_win_task,
                                        window_size=window_size,
                                        window_shift=window_shift,
                                        fs=fs,
                                        cols=data_cols,
                                       )
            x = make_windows_from_id(x_df, data_cols)
            y = y_df['pss'].values.reshape(-1, 1)

        if transforms is not None:
            x = transforms.transform(x)
        preds = model.predict(x)

        fig2, ax2 = plt.subplots()
        ax2.plot(y)
        ax2.plot(preds)
        ax2.plot(y_df.cpm.values, '--')
        ax2.legend(['label', 'pred', 'cpm'])
        ax2.set_title("second day mapped to first day cal")
        fig2.savefig(join(fig_dir, fig_title+"cal_check.png"))

        plt.close('all')

sens_rr_model(subject='S02-repeat',
              window_size=12,
              window_shift=0.2,
              lbl_str='pss',
              mdl_str='cnn1d',
              overwrite=False,
              feature_method=None,
              # feature_method='minirocket',
              train_len=5,
              test_standing=True,
              data_input='bvp',
             )