Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
#include <ur_kinematics/ur_kin.h>
namespace ur_kinematics {
void forward(const double* q, double* T) {
double s1 = sin(*q), c1 = cos(*q); q++;
double q234 = *q, s2 = sin(*q), c2 = cos(*q); q++;
double s3 = sin(*q), c3 = cos(*q); q234 += *q; q++;
q234 += *q; q++;
double s5 = sin(*q), c5 = cos(*q); q++;
double s6 = sin(*q), c6 = cos(*q);
double s234 = sin(q234), c234 = cos(q234);
*T = ((c1*c234-s1*s234)*s5)/2.0 - c5*s1 + ((c1*c234+s1*s234)*s5)/2.0; T++;
*T = (c6*(s1*s5 + ((c1*c234-s1*s234)*c5)/2.0 + ((c1*c234+s1*s234)*c5)/2.0) -
(s6*((s1*c234+c1*s234) - (s1*c234-c1*s234)))/2.0); T++;
*T = (-(c6*((s1*c234+c1*s234) - (s1*c234-c1*s234)))/2.0 -
s6*(s1*s5 + ((c1*c234-s1*s234)*c5)/2.0 + ((c1*c234+s1*s234)*c5)/2.0)); T++;
*T = ((d5*(s1*c234-c1*s234))/2.0 - (d5*(s1*c234+c1*s234))/2.0 -
d4*s1 + (d6*(c1*c234-s1*s234)*s5)/2.0 + (d6*(c1*c234+s1*s234)*s5)/2.0 -
a2*c1*c2 - d6*c5*s1 - a3*c1*c2*c3 + a3*c1*s2*s3); T++;
*T = c1*c5 + ((s1*c234+c1*s234)*s5)/2.0 + ((s1*c234-c1*s234)*s5)/2.0; T++;
*T = (c6*(((s1*c234+c1*s234)*c5)/2.0 - c1*s5 + ((s1*c234-c1*s234)*c5)/2.0) +
s6*((c1*c234-s1*s234)/2.0 - (c1*c234+s1*s234)/2.0)); T++;
*T = (c6*((c1*c234-s1*s234)/2.0 - (c1*c234+s1*s234)/2.0) -
s6*(((s1*c234+c1*s234)*c5)/2.0 - c1*s5 + ((s1*c234-c1*s234)*c5)/2.0)); T++;
*T = ((d5*(c1*c234-s1*s234))/2.0 - (d5*(c1*c234+s1*s234))/2.0 + d4*c1 +
(d6*(s1*c234+c1*s234)*s5)/2.0 + (d6*(s1*c234-c1*s234)*s5)/2.0 + d6*c1*c5 -
a2*c2*s1 - a3*c2*c3*s1 + a3*s1*s2*s3); T++;
*T = ((c234*c5-s234*s5)/2.0 - (c234*c5+s234*s5)/2.0); T++;
*T = ((s234*c6-c234*s6)/2.0 - (s234*c6+c234*s6)/2.0 - s234*c5*c6); T++;
*T = (s234*c5*s6 - (c234*c6+s234*s6)/2.0 - (c234*c6-s234*s6)/2.0); T++;
*T = (d1 + (d6*(c234*c5-s234*s5))/2.0 + a3*(s2*c3+c2*s3) + a2*s2 -
(d6*(c234*c5+s234*s5))/2.0 - d5*c234); T++;
*T = 0.0; T++; *T = 0.0; T++; *T = 0.0; T++; *T = 1.0;
}
int inverse(const double* T, double* q_sols, double q6_des) {
int num_sols = 0;
double T02 = -*T; T++; double T00 = *T; T++; double T01 = *T; T++; double T03 = -*T; T++;
double T12 = -*T; T++; double T10 = *T; T++; double T11 = *T; T++; double T13 = -*T; T++;
double T22 = *T; T++; double T20 = -*T; T++; double T21 = -*T; T++; double T23 = *T;
////////////////////////////// shoulder rotate joint (q1) //////////////////////////////
double q1[2];
{
double A = d6*T12 - T13;
double B = d6*T02 - T03;
double R = A*A + B*B;
if(fabs(A) < ZERO_THRESH) {
double div;
if(fabs(fabs(d4) - fabs(B)) < ZERO_THRESH)
div = -SIGN(d4)*SIGN(B);
else
div = -d4/B;
double arcsin = asin(div);
if(fabs(arcsin) < ZERO_THRESH)
arcsin = 0.0;
if(arcsin < 0.0)
q1[0] = arcsin + 2.0*PI;
else
q1[0] = arcsin;
q1[1] = PI - arcsin;
}
else if(fabs(B) < ZERO_THRESH) {
double div;
if(fabs(fabs(d4) - fabs(A)) < ZERO_THRESH)
div = SIGN(d4)*SIGN(A);
else
div = d4/A;
double arccos = acos(div);
q1[0] = arccos;
q1[1] = 2.0*PI - arccos;
}
else if(d4*d4 > R) {
return num_sols;
}
else {
double arccos = acos(d4 / sqrt(R)) ;
double arctan = atan2(-B, A);
double pos = arccos + arctan;
double neg = -arccos + arctan;
if(fabs(pos) < ZERO_THRESH)
pos = 0.0;
if(fabs(neg) < ZERO_THRESH)
neg = 0.0;
if(pos >= 0.0)
q1[0] = pos;
else
q1[0] = 2.0*PI + pos;
if(neg >= 0.0)
q1[1] = neg;
else
q1[1] = 2.0*PI + neg;
}
}
////////////////////////////////////////////////////////////////////////////////
////////////////////////////// wrist 2 joint (q5) //////////////////////////////
double q5[2][2];
{
for(int i=0;i<2;i++) {
double numer = (T03*sin(q1[i]) - T13*cos(q1[i])-d4);
double div;
if(fabs(fabs(numer) - fabs(d6)) < ZERO_THRESH)
div = SIGN(numer) * SIGN(d6);
else
div = numer / d6;
double arccos = acos(div);
q5[i][0] = arccos;
q5[i][1] = 2.0*PI - arccos;
}
}
////////////////////////////////////////////////////////////////////////////////
{
for(int i=0;i<2;i++) {
for(int j=0;j<2;j++) {
double c1 = cos(q1[i]), s1 = sin(q1[i]);
double c5 = cos(q5[i][j]), s5 = sin(q5[i][j]);
double q6;
////////////////////////////// wrist 3 joint (q6) //////////////////////////////
if(fabs(s5) < ZERO_THRESH)
q6 = q6_des;
else {
q6 = atan2(SIGN(s5)*-(T01*s1 - T11*c1),
SIGN(s5)*(T00*s1 - T10*c1));
if(fabs(q6) < ZERO_THRESH)
q6 = 0.0;
if(q6 < 0.0)
q6 += 2.0*PI;
}
////////////////////////////////////////////////////////////////////////////////
double q2[2], q3[2], q4[2];
///////////////////////////// RRR joints (q2,q3,q4) ////////////////////////////
double c6 = cos(q6), s6 = sin(q6);
double x04x = -s5*(T02*c1 + T12*s1) - c5*(s6*(T01*c1 + T11*s1) - c6*(T00*c1 + T10*s1));
double x04y = c5*(T20*c6 - T21*s6) - T22*s5;
double p13x = d5*(s6*(T00*c1 + T10*s1) + c6*(T01*c1 + T11*s1)) - d6*(T02*c1 + T12*s1) +
T03*c1 + T13*s1;
double p13y = T23 - d1 - d6*T22 + d5*(T21*c6 + T20*s6);
double c3 = (p13x*p13x + p13y*p13y - a2*a2 - a3*a3) / (2.0*a2*a3);
if(fabs(fabs(c3) - 1.0) < ZERO_THRESH)
c3 = SIGN(c3);
else if(fabs(c3) > 1.0) {
// TODO NO SOLUTION
continue;
}
double arccos = acos(c3);
q3[0] = arccos;
q3[1] = 2.0*PI - arccos;
double denom = a2*a2 + a3*a3 + 2*a2*a3*c3;
double s3 = sin(arccos);
double A = (a2 + a3*c3), B = a3*s3;
q2[0] = atan2((A*p13y - B*p13x) / denom, (A*p13x + B*p13y) / denom);
q2[1] = atan2((A*p13y + B*p13x) / denom, (A*p13x - B*p13y) / denom);
double c23_0 = cos(q2[0]+q3[0]);
double s23_0 = sin(q2[0]+q3[0]);
double c23_1 = cos(q2[1]+q3[1]);
double s23_1 = sin(q2[1]+q3[1]);
q4[0] = atan2(c23_0*x04y - s23_0*x04x, x04x*c23_0 + x04y*s23_0);
q4[1] = atan2(c23_1*x04y - s23_1*x04x, x04x*c23_1 + x04y*s23_1);
////////////////////////////////////////////////////////////////////////////////
for(int k=0;k<2;k++) {
if(fabs(q2[k]) < ZERO_THRESH)
q2[k] = 0.0;
else if(q2[k] < 0.0) q2[k] += 2.0*PI;
if(fabs(q4[k]) < ZERO_THRESH)
q4[k] = 0.0;
else if(q4[k] < 0.0) q4[k] += 2.0*PI;
q_sols[num_sols*6+0] = q1[i]; q_sols[num_sols*6+1] = q2[k];
q_sols[num_sols*6+2] = q3[k]; q_sols[num_sols*6+3] = q4[k];
q_sols[num_sols*6+4] = q5[i][j]; q_sols[num_sols*6+5] = q6;
num_sols++;
}
}
}
}
return num_sols;
}
};
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
#define IKFAST_HAS_LIBRARY
#include <ur_kinematics/ikfast.h>
using namespace ikfast;
// check if the included ikfast version matches what this file was compiled with
#define IKFAST_COMPILE_ASSERT(x) extern int __dummy[(int)x]
IKFAST_COMPILE_ASSERT(IKFAST_VERSION==61);
#ifdef IKFAST_NAMESPACE
namespace IKFAST_NAMESPACE {
#endif
void to_mat44(double * mat4_4, const IkReal* eetrans, const IkReal* eerot)
{
for(int i=0; i< 3;++i){
mat4_4[i*4+0] = eerot[i*3+0];
mat4_4[i*4+1] = eerot[i*3+1];
mat4_4[i*4+2] = eerot[i*3+2];
mat4_4[i*4+3] = eetrans[i];
}
mat4_4[3*4+0] = 0;
mat4_4[3*4+1] = 0;
mat4_4[3*4+2] = 0;
mat4_4[3*4+3] = 1;
}
void from_mat44(const double * mat4_4, IkReal* eetrans, IkReal* eerot)
{
for(int i=0; i< 3;++i){
eerot[i*3+0] = mat4_4[i*4+0];
eerot[i*3+1] = mat4_4[i*4+1];
eerot[i*3+2] = mat4_4[i*4+2];
eetrans[i] = mat4_4[i*4+3];
}
}
IKFAST_API bool ComputeIk(const IkReal* eetrans, const IkReal* eerot, const IkReal* pfree, IkSolutionListBase<IkReal>& solutions) {
if(!pfree) return false;
int n = GetNumJoints();
double q_sols[8*6];
double T[16];
to_mat44(T, eetrans, eerot);
int num_sols = ur_kinematics::inverse(T, q_sols,pfree[0]);
std::vector<int> vfree(0);
for (int i=0; i < num_sols; ++i){
std::vector<IkSingleDOFSolutionBase<IkReal> > vinfos(n);
for (int j=0; j < n; ++j) vinfos[j].foffset = q_sols[i*n+j];
solutions.AddSolution(vinfos,vfree);
}
return num_sols > 0;
}
IKFAST_API void ComputeFk(const IkReal* j, IkReal* eetrans, IkReal* eerot)
{
double T[16];
ur_kinematics::forward(j,T);
from_mat44(T,eetrans,eerot);
}
IKFAST_API int GetNumFreeParameters() { return 1; }
IKFAST_API int* GetFreeParameters() { static int freeparams[] = {5}; return freeparams; }
IKFAST_API int GetNumJoints() { return 6; }
IKFAST_API int GetIkRealSize() { return sizeof(IkReal); }
#ifdef IKFAST_NAMESPACE
} // end namespace
#endif
#ifndef IKFAST_NO_MAIN
using namespace std;
using namespace ur_kinematics;
int main(int argc, char* argv[])
{
double q[6] = {0.0, 0.0, 1.0, 0.0, 1.0, 0.0};
double* T = new double[16];
forward(q, T);
for(int i=0;i<4;i++) {
for(int j=i*4;j<(i+1)*4;j++)
printf("%1.3f ", T[j]);
printf("\n");
}
double q_sols[8*6];
int num_sols;
num_sols = inverse(T, q_sols);
for(int i=0;i<num_sols;i++)
printf("%1.6f %1.6f %1.6f %1.6f %1.6f %1.6f\n",
q_sols[i*6+0], q_sols[i*6+1], q_sols[i*6+2], q_sols[i*6+3], q_sols[i*6+4], q_sols[i*6+5]);
for(int i=0;i<=4;i++)
printf("%f ", PI/2.0*i);
printf("\n");
return 0;
}