Skip to content
Snippets Groups Projects
Commit 56a0b294 authored by Raymond Chia's avatar Raymond Chia
Browse files

added docs

parent 1b5a2fc2
Branches
No related merge requests found
2023-11-26 23:59:02.254525: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.
To enable the following instructions: AVX2 AVX512F FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.
Using TensorFlow backend
Namespace(data_input='imu-bvp', feature_method='tsfresh', lbl_str='pss', model='elastic', overwrite=0, subject=3, test_standing=1, train_len=5, win_shift=0.2, win_size=12)
Using pre-set data id: 2
imu-bvp_rr_Pilot03_id2_combi5.0-7.0-10.0-12.0-15.0
train
(101, 5485)
test
(978, 5484)
---ElasticNet---
/usr/local/lib/python3.8/dist-packages/sklearn/linear_model/_coordinate_descent.py:1563: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
y = column_or_1d(y, warn=True)
adding new entry
subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval
0 Pilot02 0 linreg ... -9.864563 0.038776 0.364940
1 Pilot02 0 linreg ... -11.875765 0.070097 0.101171
2 Pilot02 0 linreg ... -11.069278 0.047023 0.271822
3 Pilot02 0 linreg ... -25.345517 0.016892 0.693177
4 Pilot02 0 linreg ... -15.299470 0.118749 0.005380
.. ... ... ... ... ... ... ...
544 Pilot02 3 linreg ... -1.253991 -0.014203 0.616459
545 Pilot02 3 linreg ... -1.973362 -0.015948 0.573832
546 Pilot02 3 linreg ... -16.926541 -0.011023 0.697489
547 Pilot02 3 linreg ... -0.948799 -0.007771 0.784065
548 Pilot03 2 elastic ... -1.758438 -0.126951 0.000069
[549 rows x 18 columns]
imu-bvp_rr_Pilot03_id2_combi5.0-7.0-10.0-12.0-17.0
train
(100, 5485)
test
(978, 5484)
---ElasticNet---
/usr/local/lib/python3.8/dist-packages/sklearn/linear_model/_coordinate_descent.py:1563: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
y = column_or_1d(y, warn=True)
adding new entry
subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval
0 Pilot02 0 linreg ... -9.864563 0.038776 0.364940
1 Pilot02 0 linreg ... -11.875765 0.070097 0.101171
2 Pilot02 0 linreg ... -11.069278 0.047023 0.271822
3 Pilot02 0 linreg ... -25.345517 0.016892 0.693177
4 Pilot02 0 linreg ... -15.299470 0.118749 0.005380
.. ... ... ... ... ... ... ...
545 Pilot02 3 linreg ... -1.973362 -0.015948 0.573832
546 Pilot02 3 linreg ... -16.926541 -0.011023 0.697489
547 Pilot02 3 linreg ... -0.948799 -0.007771 0.784065
548 Pilot03 2 elastic ... -1.758438 -0.126951 0.000069
549 Pilot03 2 elastic ... -1.925223 -0.070755 0.026920
[550 rows x 18 columns]
imu-bvp_rr_Pilot03_id2_combi5.0-7.0-10.0-12.0-20.0
train
(101, 5485)
test
(978, 5484)
---ElasticNet---
/usr/local/lib/python3.8/dist-packages/sklearn/linear_model/_coordinate_descent.py:1563: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
y = column_or_1d(y, warn=True)
adding new entry
subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval
0 Pilot02 0 linreg ... -9.864563 0.038776 0.364940
1 Pilot02 0 linreg ... -11.875765 0.070097 0.101171
2 Pilot02 0 linreg ... -11.069278 0.047023 0.271822
3 Pilot02 0 linreg ... -25.345517 0.016892 0.693177
4 Pilot02 0 linreg ... -15.299470 0.118749 0.005380
.. ... ... ... ... ... ... ...
547 Pilot02 3 linreg ... -0.948799 -0.007771 0.784065
548 Pilot03 2 elastic ... -1.758438 -0.126951 0.000069
549 Pilot03 2 elastic ... -1.925223 -0.070755 0.026920
550 Pilot02 3 elastic ... -5.596573 0.107220 0.000150
551 Pilot03 2 elastic ... -2.161178 -0.052695 0.099562
[552 rows x 18 columns]
imu-bvp_rr_Pilot03_id2_combi5.0-7.0-10.0-15.0-17.0
train
(101, 5485)
test
(978, 5484)
---ElasticNet---
/usr/local/lib/python3.8/dist-packages/sklearn/linear_model/_coordinate_descent.py:1563: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
y = column_or_1d(y, warn=True)
adding new entry
subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval
0 Pilot02 0 linreg ... -9.864563 0.038776 0.364940
1 Pilot02 0 linreg ... -11.875765 0.070097 0.101171
2 Pilot02 0 linreg ... -11.069278 0.047023 0.271822
3 Pilot02 0 linreg ... -25.345517 0.016892 0.693177
4 Pilot02 0 linreg ... -15.299470 0.118749 0.005380
.. ... ... ... ... ... ... ...
548 Pilot03 2 elastic ... -1.758438 -0.126951 0.000069
549 Pilot03 2 elastic ... -1.925223 -0.070755 0.026920
550 Pilot02 3 elastic ... -5.596573 0.107220 0.000150
551 Pilot03 2 elastic ... -2.161178 -0.052695 0.099562
552 Pilot03 2 elastic ... -1.996716 -0.129399 0.000049
[553 rows x 18 columns]
imu-bvp_rr_Pilot03_id2_combi5.0-7.0-10.0-15.0-20.0
train
(102, 5485)
test
(978, 5484)
---ElasticNet---
/usr/local/lib/python3.8/dist-packages/sklearn/linear_model/_coordinate_descent.py:1563: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
y = column_or_1d(y, warn=True)
adding new entry
subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval
0 Pilot02 0 linreg ... -9.864563 0.038776 0.364940
1 Pilot02 0 linreg ... -11.875765 0.070097 0.101171
2 Pilot02 0 linreg ... -11.069278 0.047023 0.271822
3 Pilot02 0 linreg ... -25.345517 0.016892 0.693177
4 Pilot02 0 linreg ... -15.299470 0.118749 0.005380
.. ... ... ... ... ... ... ...
550 Pilot02 3 elastic ... -5.596573 0.107220 0.000150
551 Pilot03 2 elastic ... -2.161178 -0.052695 0.099562
552 Pilot03 2 elastic ... -1.996716 -0.129399 0.000049
553 Pilot02 3 elastic ... -7.182356 0.069423 0.014245
554 Pilot03 2 elastic ... -2.473361 -0.103564 0.001181
[555 rows x 18 columns]
imu-bvp_rr_Pilot03_id2_combi5.0-7.0-10.0-17.0-20.0
train
(101, 5485)
test
(978, 5484)
---ElasticNet---
/usr/local/lib/python3.8/dist-packages/sklearn/linear_model/_coordinate_descent.py:1563: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
y = column_or_1d(y, warn=True)
adding new entry
subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval
0 Pilot02 0 linreg ... -9.864563 0.038776 0.364940
1 Pilot02 0 linreg ... -11.875765 0.070097 0.101171
2 Pilot02 0 linreg ... -11.069278 0.047023 0.271822
3 Pilot02 0 linreg ... -25.345517 0.016892 0.693177
4 Pilot02 0 linreg ... -15.299470 0.118749 0.005380
.. ... ... ... ... ... ... ...
551 Pilot03 2 elastic ... -2.161178 -0.052695 0.099562
552 Pilot03 2 elastic ... -1.996716 -0.129399 0.000049
553 Pilot02 3 elastic ... -7.182356 0.069423 0.014245
554 Pilot03 2 elastic ... -2.473361 -0.103564 0.001181
555 Pilot03 2 elastic ... -2.166505 -0.051172 0.109753
[556 rows x 18 columns]
imu-bvp_rr_Pilot03_id2_combi5.0-7.0-12.0-15.0-17.0
train
(101, 5485)
test
(978, 5484)
---ElasticNet---
/usr/local/lib/python3.8/dist-packages/sklearn/linear_model/_coordinate_descent.py:1563: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
y = column_or_1d(y, warn=True)
adding new entry
subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval
0 Pilot02 0 linreg ... -9.864563 0.038776 0.364940
1 Pilot02 0 linreg ... -11.875765 0.070097 0.101171
2 Pilot02 0 linreg ... -11.069278 0.047023 0.271822
3 Pilot02 0 linreg ... -25.345517 0.016892 0.693177
4 Pilot02 0 linreg ... -15.299470 0.118749 0.005380
.. ... ... ... ... ... ... ...
553 Pilot02 3 elastic ... -7.182356 0.069423 0.014245
554 Pilot03 2 elastic ... -2.473361 -0.103564 0.001181
555 Pilot03 2 elastic ... -2.166505 -0.051172 0.109753
556 Pilot02 3 elastic ... -3.104293 NaN NaN
557 Pilot03 2 elastic ... -1.913436 -0.117161 0.000241
[558 rows x 18 columns]
imu-bvp_rr_Pilot03_id2_combi5.0-7.0-12.0-15.0-20.0
train
(102, 5485)
test
(978, 5484)
---ElasticNet---
/usr/local/lib/python3.8/dist-packages/sklearn/linear_model/_coordinate_descent.py:1563: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
y = column_or_1d(y, warn=True)
adding new entry
subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval
0 Pilot02 0 linreg ... -9.864563 0.038776 0.364940
1 Pilot02 0 linreg ... -11.875765 0.070097 0.101171
2 Pilot02 0 linreg ... -11.069278 0.047023 0.271822
3 Pilot02 0 linreg ... -25.345517 0.016892 0.693177
4 Pilot02 0 linreg ... -15.299470 0.118749 0.005380
.. ... ... ... ... ... ... ...
555 Pilot03 2 elastic ... -2.166505 -0.051172 0.109753
556 Pilot02 3 elastic ... -3.104293 NaN NaN
557 Pilot03 2 elastic ... -1.913436 -0.117161 0.000241
558 Pilot02 3 elastic ... -5.419605 0.029585 0.296716
559 Pilot03 2 elastic ... -2.370444 -0.110486 0.000537
[560 rows x 18 columns]
imu-bvp_rr_Pilot03_id2_combi5.0-7.0-12.0-17.0-20.0
train
(101, 5485)
test
(978, 5484)
---ElasticNet---
/usr/local/lib/python3.8/dist-packages/sklearn/linear_model/_coordinate_descent.py:1563: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
y = column_or_1d(y, warn=True)
adding new entry
subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval
0 Pilot02 0 linreg ... -9.864563 0.038776 0.364940
1 Pilot02 0 linreg ... -11.875765 0.070097 0.101171
2 Pilot02 0 linreg ... -11.069278 0.047023 0.271822
3 Pilot02 0 linreg ... -25.345517 0.016892 0.693177
4 Pilot02 0 linreg ... -15.299470 0.118749 0.005380
.. ... ... ... ... ... ... ...
556 Pilot02 3 elastic ... -3.104293 NaN NaN
557 Pilot03 2 elastic ... -1.913436 -0.117161 0.000241
558 Pilot02 3 elastic ... -5.419605 0.029585 0.296716
559 Pilot03 2 elastic ... -2.370444 -0.110486 0.000537
560 Pilot03 2 elastic ... -2.268817 -0.092573 0.003761
[561 rows x 18 columns]
imu-bvp_rr_Pilot03_id2_combi5.0-7.0-15.0-17.0-20.0
train
(102, 5485)
test
(978, 5484)
---ElasticNet---
/usr/local/lib/python3.8/dist-packages/sklearn/linear_model/_coordinate_descent.py:1563: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
y = column_or_1d(y, warn=True)
adding new entry
subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval
0 Pilot02 0 linreg ... -9.864563 0.038776 0.364940
1 Pilot02 0 linreg ... -11.875765 0.070097 0.101171
2 Pilot02 0 linreg ... -11.069278 0.047023 0.271822
3 Pilot02 0 linreg ... -25.345517 0.016892 0.693177
4 Pilot02 0 linreg ... -15.299470 0.118749 0.005380
.. ... ... ... ... ... ... ...
557 Pilot03 2 elastic ... -1.913436 -0.117161 0.000241
558 Pilot02 3 elastic ... -5.419605 0.029585 0.296716
559 Pilot03 2 elastic ... -2.370444 -0.110486 0.000537
560 Pilot03 2 elastic ... -2.268817 -0.092573 0.003761
561 Pilot03 2 elastic ... -1.844984 -0.102995 0.001258
[562 rows x 18 columns]
imu-bvp_rr_Pilot03_id2_combi5.0-10.0-12.0-15.0-17.0
train
(101, 5485)
test
(978, 5484)
---ElasticNet---
/usr/local/lib/python3.8/dist-packages/sklearn/linear_model/_coordinate_descent.py:1563: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
y = column_or_1d(y, warn=True)
adding new entry
subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval
0 Pilot02 0 linreg ... -9.864563 0.038776 0.364940
1 Pilot02 0 linreg ... -11.875765 0.070097 0.101171
2 Pilot02 0 linreg ... -11.069278 0.047023 0.271822
3 Pilot02 0 linreg ... -25.345517 0.016892 0.693177
4 Pilot02 0 linreg ... -15.299470 0.118749 0.005380
.. ... ... ... ... ... ... ...
559 Pilot03 2 elastic ... -2.370444 -0.110486 0.000537
560 Pilot03 2 elastic ... -2.268817 -0.092573 0.003761
561 Pilot03 2 elastic ... -1.844984 -0.102995 0.001258
562 Pilot02 3 elastic ... -1.737720 0.018534 0.513349
563 Pilot03 2 elastic ... -2.074848 -0.111489 0.000478
[564 rows x 18 columns]
imu-bvp_rr_Pilot03_id2_combi5.0-10.0-12.0-15.0-20.0
train
(102, 5485)
test
(978, 5484)
---ElasticNet---
/usr/local/lib/python3.8/dist-packages/sklearn/linear_model/_coordinate_descent.py:1563: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
y = column_or_1d(y, warn=True)
adding new entry
subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval
0 Pilot02 0 linreg ... -9.864563 0.038776 0.364940
1 Pilot02 0 linreg ... -11.875765 0.070097 0.101171
2 Pilot02 0 linreg ... -11.069278 0.047023 0.271822
3 Pilot02 0 linreg ... -25.345517 0.016892 0.693177
4 Pilot02 0 linreg ... -15.299470 0.118749 0.005380
.. ... ... ... ... ... ... ...
560 Pilot03 2 elastic ... -2.268817 -0.092573 0.003761
561 Pilot03 2 elastic ... -1.844984 -0.102995 0.001258
562 Pilot02 3 elastic ... -1.737720 0.018534 0.513349
563 Pilot03 2 elastic ... -2.074848 -0.111489 0.000478
564 Pilot03 2 elastic ... -2.468988 -0.096367 0.002554
[565 rows x 18 columns]
imu-bvp_rr_Pilot03_id2_combi5.0-10.0-12.0-17.0-20.0
train
(101, 5485)
test
(978, 5484)
---ElasticNet---
/usr/local/lib/python3.8/dist-packages/sklearn/linear_model/_coordinate_descent.py:1563: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
y = column_or_1d(y, warn=True)
adding new entry
subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval
0 Pilot02 0 linreg ... -9.864563 0.038776 0.364940
1 Pilot02 0 linreg ... -11.875765 0.070097 0.101171
2 Pilot02 0 linreg ... -11.069278 0.047023 0.271822
3 Pilot02 0 linreg ... -25.345517 0.016892 0.693177
4 Pilot02 0 linreg ... -15.299470 0.118749 0.005380
.. ... ... ... ... ... ... ...
562 Pilot02 3 elastic ... -1.737720 0.018534 0.513349
563 Pilot03 2 elastic ... -2.074848 -0.111489 0.000478
564 Pilot03 2 elastic ... -2.468988 -0.096367 0.002554
565 Pilot02 3 elastic ... -1.610216 -0.007174 0.800294
566 Pilot03 2 elastic ... -2.274461 -0.073805 0.020982
[567 rows x 18 columns]
imu-bvp_rr_Pilot03_id2_combi5.0-10.0-15.0-17.0-20.0
train
(102, 5485)
test
(978, 5484)
---ElasticNet---
/usr/local/lib/python3.8/dist-packages/sklearn/linear_model/_coordinate_descent.py:1563: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
y = column_or_1d(y, warn=True)
adding new entry
subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval
0 Pilot02 0 linreg ... -9.864563 0.038776 0.364940
1 Pilot02 0 linreg ... -11.875765 0.070097 0.101171
2 Pilot02 0 linreg ... -11.069278 0.047023 0.271822
3 Pilot02 0 linreg ... -25.345517 0.016892 0.693177
4 Pilot02 0 linreg ... -15.299470 0.118749 0.005380
.. ... ... ... ... ... ... ...
563 Pilot03 2 elastic ... -2.074848 -0.111489 0.000478
564 Pilot03 2 elastic ... -2.468988 -0.096367 0.002554
565 Pilot02 3 elastic ... -1.610216 -0.007174 0.800294
566 Pilot03 2 elastic ... -2.274461 -0.073805 0.020982
567 Pilot03 2 elastic ... -1.732794 -0.102280 0.001360
[568 rows x 18 columns]
imu-bvp_rr_Pilot03_id2_combi5.0-12.0-15.0-17.0-20.0
train
(102, 5485)
test
(978, 5484)
---ElasticNet---
/usr/local/lib/python3.8/dist-packages/sklearn/linear_model/_coordinate_descent.py:1563: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
y = column_or_1d(y, warn=True)
adding new entry
subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval
0 Pilot02 0 linreg ... -9.864563 0.038776 0.364940
1 Pilot02 0 linreg ... -11.875765 0.070097 0.101171
2 Pilot02 0 linreg ... -11.069278 0.047023 0.271822
3 Pilot02 0 linreg ... -25.345517 0.016892 0.693177
4 Pilot02 0 linreg ... -15.299470 0.118749 0.005380
.. ... ... ... ... ... ... ...
565 Pilot02 3 elastic ... -1.610216 -0.007174 0.800294
566 Pilot03 2 elastic ... -2.274461 -0.073805 0.020982
567 Pilot03 2 elastic ... -1.732794 -0.102280 0.001360
568 Pilot02 3 elastic ... -3.323004 0.042106 0.137421
569 Pilot03 2 elastic ... -1.298003 -0.060662 0.057906
[570 rows x 18 columns]
imu-bvp_rr_Pilot03_id2_combi7.0-10.0-12.0-15.0-17.0
train
(101, 5485)
test
(978, 5484)
---ElasticNet---
/usr/local/lib/python3.8/dist-packages/sklearn/linear_model/_coordinate_descent.py:1563: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
y = column_or_1d(y, warn=True)
adding new entry
subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval
0 Pilot02 0 linreg ... -9.864563 0.038776 3.649402e-01
1 Pilot02 0 linreg ... -11.875765 0.070097 1.011711e-01
2 Pilot02 0 linreg ... -11.069278 0.047023 2.718220e-01
3 Pilot02 0 linreg ... -25.345517 0.016892 6.931765e-01
4 Pilot02 0 linreg ... -15.299470 0.118749 5.380273e-03
.. ... ... ... ... ... ... ...
566 Pilot03 2 elastic ... -2.274461 -0.073805 2.098219e-02
567 Pilot03 2 elastic ... -1.732794 -0.102280 1.360380e-03
568 Pilot02 3 elastic ... -3.323004 0.042106 1.374214e-01
569 Pilot03 2 elastic ... -1.298003 -0.060662 5.790618e-02
570 Pilot03 2 elastic ... -1.030237 -0.161102 4.088040e-07
[571 rows x 18 columns]
imu-bvp_rr_Pilot03_id2_combi7.0-10.0-12.0-15.0-20.0
train
(102, 5485)
test
(978, 5484)
---ElasticNet---
/usr/local/lib/python3.8/dist-packages/sklearn/linear_model/_coordinate_descent.py:1563: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
y = column_or_1d(y, warn=True)
adding new entry
subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval
0 Pilot02 0 linreg ... -9.864563 0.038776 3.649402e-01
1 Pilot02 0 linreg ... -11.875765 0.070097 1.011711e-01
2 Pilot02 0 linreg ... -11.069278 0.047023 2.718220e-01
3 Pilot02 0 linreg ... -25.345517 0.016892 6.931765e-01
4 Pilot02 0 linreg ... -15.299470 0.118749 5.380273e-03
.. ... ... ... ... ... ... ...
568 Pilot02 3 elastic ... -3.323004 0.042106 1.374214e-01
569 Pilot03 2 elastic ... -1.298003 -0.060662 5.790618e-02
570 Pilot03 2 elastic ... -1.030237 -0.161102 4.088040e-07
571 Pilot02 3 elastic ... -2.548343 0.009285 7.433378e-01
572 Pilot03 2 elastic ... -1.815615 -0.193334 1.087464e-09
[573 rows x 18 columns]
imu-bvp_rr_Pilot03_id2_combi7.0-10.0-12.0-17.0-20.0
train
(101, 5485)
test
(978, 5484)
---ElasticNet---
/usr/local/lib/python3.8/dist-packages/sklearn/linear_model/_coordinate_descent.py:1563: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
y = column_or_1d(y, warn=True)
adding new entry
subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval
0 Pilot02 0 linreg ... -9.864563 0.038776 3.649402e-01
1 Pilot02 0 linreg ... -11.875765 0.070097 1.011711e-01
2 Pilot02 0 linreg ... -11.069278 0.047023 2.718220e-01
3 Pilot02 0 linreg ... -25.345517 0.016892 6.931765e-01
4 Pilot02 0 linreg ... -15.299470 0.118749 5.380273e-03
.. ... ... ... ... ... ... ...
570 Pilot03 2 elastic ... -1.030237 -0.161102 4.088040e-07
571 Pilot02 3 elastic ... -2.548343 0.009285 7.433378e-01
572 Pilot03 2 elastic ... -1.815615 -0.193334 1.087464e-09
573 Pilot02 3 elastic ... -1.880238 -0.040916 1.488975e-01
574 Pilot03 2 elastic ... -1.328308 -0.136510 1.838231e-05
[575 rows x 18 columns]
imu-bvp_rr_Pilot03_id2_combi7.0-10.0-15.0-17.0-20.0
train
(102, 5485)
test
(978, 5484)
---ElasticNet---
/usr/local/lib/python3.8/dist-packages/sklearn/linear_model/_coordinate_descent.py:1563: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
y = column_or_1d(y, warn=True)
adding new entry
subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval
0 Pilot02 0 linreg ... -9.864563 0.038776 3.649402e-01
1 Pilot02 0 linreg ... -11.875765 0.070097 1.011711e-01
2 Pilot02 0 linreg ... -11.069278 0.047023 2.718220e-01
3 Pilot02 0 linreg ... -25.345517 0.016892 6.931765e-01
4 Pilot02 0 linreg ... -15.299470 0.118749 5.380273e-03
.. ... ... ... ... ... ... ...
571 Pilot02 3 elastic ... -2.548343 0.009285 7.433378e-01
572 Pilot03 2 elastic ... -1.815615 -0.193334 1.087464e-09
573 Pilot02 3 elastic ... -1.880238 -0.040916 1.488975e-01
574 Pilot03 2 elastic ... -1.328308 -0.136510 1.838231e-05
575 Pilot03 2 elastic ... -1.926497 -0.186432 4.243797e-09
[576 rows x 18 columns]
imu-bvp_rr_Pilot03_id2_combi7.0-12.0-15.0-17.0-20.0
train
(102, 5485)
test
(978, 5484)
---ElasticNet---
/usr/local/lib/python3.8/dist-packages/sklearn/linear_model/_coordinate_descent.py:1563: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
y = column_or_1d(y, warn=True)
adding new entry
subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval
0 Pilot02 0 linreg ... -9.864563 0.038776 3.649402e-01
1 Pilot02 0 linreg ... -11.875765 0.070097 1.011711e-01
2 Pilot02 0 linreg ... -11.069278 0.047023 2.718220e-01
3 Pilot02 0 linreg ... -25.345517 0.016892 6.931765e-01
4 Pilot02 0 linreg ... -15.299470 0.118749 5.380273e-03
.. ... ... ... ... ... ... ...
573 Pilot02 3 elastic ... -1.880238 -0.040916 1.488975e-01
574 Pilot03 2 elastic ... -1.328308 -0.136510 1.838231e-05
575 Pilot03 2 elastic ... -1.926497 -0.186432 4.243797e-09
576 Pilot02 3 elastic ... -2.947342 -0.007501 7.913772e-01
577 Pilot03 2 elastic ... -0.806993 -0.139394 1.213925e-05
[578 rows x 18 columns]
imu-bvp_rr_Pilot03_id2_combi10.0-12.0-15.0-17.0-20.0
train
(102, 5485)
test
(978, 5484)
---ElasticNet---
/usr/local/lib/python3.8/dist-packages/sklearn/linear_model/_coordinate_descent.py:1563: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
y = column_or_1d(y, warn=True)
adding new entry
subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval
0 Pilot02 0 linreg ... -9.864563 3.877603e-02 3.649402e-01
1 Pilot02 0 linreg ... -11.875765 7.009716e-02 1.011711e-01
2 Pilot02 0 linreg ... -11.069278 4.702307e-02 2.718220e-01
3 Pilot02 0 linreg ... -25.345517 1.689162e-02 6.931765e-01
4 Pilot02 0 linreg ... -15.299470 1.187485e-01 5.380273e-03
.. ... ... ... ... ... ... ...
575 Pilot03 2 elastic ... -1.926497 -1.864318e-01 4.243797e-09
576 Pilot02 3 elastic ... -2.947342 -7.501254e-03 7.913772e-01
577 Pilot03 2 elastic ... -0.806993 -1.393941e-01 1.213925e-05
578 Pilot02 3 elastic ... -2.285661 6.344185e-07 9.999821e-01
579 Pilot03 2 elastic ... -0.123614 1.726530e-02 5.896886e-01
[580 rows x 18 columns]
Namespace(data_input='imu-bvp', feature_method='tsfresh', lbl_str='pss', model='elastic', overwrite=0, subject=3, test_standing=1, train_len=5, win_shift=0.2, win_size=12)
......@@ -4,4 +4,460 @@ Using TensorFlow backend
Namespace(data_input='imu-bvp', feature_method='tsfresh', lbl_str='pss', model='linreg', overwrite=1, subject=3, test_standing=1, train_len=5, win_shift=0.2, win_size=12)
Using pre-set data id: 2
Dependency not available for matrix_profile, this feature will be disabled!
Feature Extraction: 0%| | 0/65 [00:00<?, ?it/s]
\ No newline at end of file
Feature Extraction: 0%| | 0/65 [00:00<?, ?it/s] Feature Extraction: 2%|▏ | 1/65 [05:32<5:54:39, 332.48s/it] Feature Extraction: 3%|▎ | 2/65 [05:34<2:25:10, 138.27s/it] Feature Extraction: 5%|▍ | 3/65 [05:36<1:18:40, 76.14s/it] Feature Extraction: 6%|▌ | 4/65 [05:38<47:35, 46.82s/it] Feature Extraction: 8%|▊ | 5/65 [05:40<30:41, 30.69s/it] Feature Extraction: 9%|▉ | 6/65 [05:42<20:18, 20.65s/it] Feature Extraction: 11%|█ | 7/65 [05:43<13:49, 14.30s/it] Feature Extraction: 12%|█▏ | 8/65 [05:44<09:34, 10.08s/it] Feature Extraction: 14%|█▍ | 9/65 [05:48<07:31, 8.07s/it] Feature Extraction: 15%|█▌ | 10/65 [05:48<05:15, 5.73s/it] Feature Extraction: 17%|█▋ | 11/65 [05:49<03:49, 4.24s/it] Feature Extraction: 18%|█▊ | 12/65 [05:50<02:47, 3.17s/it] Feature Extraction: 20%|██ | 13/65 [05:51<02:12, 2.55s/it] Feature Extraction: 22%|██▏ | 14/65 [11:02<1:21:18, 95.65s/it] Feature Extraction: 23%|██▎ | 15/65 [11:09<57:27, 68.94s/it] Feature Extraction: 25%|██▍ | 16/65 [11:12<40:05, 49.08s/it] Feature Extraction: 26%|██▌ | 17/65 [11:13<27:49, 34.78s/it] Feature Extraction: 28%|██▊ | 18/65 [11:13<19:05, 24.36s/it] Feature Extraction: 29%|██▉ | 19/65 [11:14<13:10, 17.18s/it] Feature Extraction: 31%|███ | 20/65 [11:19<10:16, 13.70s/it] Feature Extraction: 32%|███▏ | 21/65 [11:19<07:05, 9.68s/it] Feature Extraction: 34%|███▍ | 22/65 [11:21<05:09, 7.19s/it] Feature Extraction: 35%|███▌ | 23/65 [11:21<03:35, 5.14s/it] Feature Extraction: 37%|███▋ | 24/65 [11:22<02:36, 3.81s/it] Feature Extraction: 38%|███▊ | 25/65 [11:25<02:18, 3.46s/it] Feature Extraction: 40%|████ | 26/65 [11:27<02:08, 3.29s/it] Feature Extraction: 42%|████▏ | 27/65 [16:36<1:00:02, 94.79s/it] Feature Extraction: 43%|████▎ | 28/65 [16:38<41:21, 67.06s/it] Feature Extraction: 45%|████▍ | 29/65 [16:39<28:21, 47.25s/it] Feature Extraction: 46%|████▌ | 30/65 [16:41<19:31, 33.48s/it] Feature Extraction: 48%|████▊ | 31/65 [16:48<14:28, 25.54s/it] Feature Extraction: 49%|████▉ | 32/65 [16:48<09:51, 17.92s/it] Feature Extraction: 51%|█████ | 33/65 [16:48<06:42, 12.58s/it] Feature Extraction: 52%|█████▏ | 34/65 [16:50<04:50, 9.37s/it] Feature Extraction: 54%|█████▍ | 35/65 [16:53<03:44, 7.49s/it] Feature Extraction: 55%|█████▌ | 36/65 [16:56<02:58, 6.14s/it] Feature Extraction: 57%|█████▋ | 37/65 [16:57<02:13, 4.75s/it] Feature Extraction: 58%|█████▊ | 38/65 [16:59<01:40, 3.73s/it] Feature Extraction: 60%|██████ | 39/65 [17:01<01:25, 3.30s/it] Feature Extraction: 62%|██████▏ | 40/65 [22:06<39:02, 93.69s/it] Feature Extraction: 63%|██████▎ | 41/65 [22:10<26:42, 66.78s/it] Feature Extraction: 65%|██████▍ | 42/65 [22:10<17:56, 46.80s/it] Feature Extraction: 66%|██████▌ | 43/65 [22:11<12:07, 33.05s/it] Feature Extraction: 68%|██████▊ | 44/65 [22:16<08:39, 24.73s/it] Feature Extraction: 69%|██████▉ | 45/65 [22:18<06:00, 18.01s/it] Feature Extraction: 71%|███████ | 46/65 [22:19<04:03, 12.83s/it] Feature Extraction: 72%|███████▏ | 47/65 [22:21<02:50, 9.44s/it] Feature Extraction: 74%|███████▍ | 48/65 [22:24<02:07, 7.50s/it] Feature Extraction: 75%|███████▌ | 49/65 [22:24<01:25, 5.33s/it] Feature Extraction: 77%|███████▋ | 50/65 [22:28<01:12, 4.86s/it] Feature Extraction: 78%|███████▊ | 51/65 [22:28<00:48, 3.49s/it] Feature Extraction: 80%|████████ | 52/65 [22:29<00:34, 2.69s/it] Feature Extraction: 82%|████████▏ | 53/65 [25:40<11:52, 59.34s/it] Feature Extraction: 83%|████████▎ | 54/65 [27:29<13:36, 74.23s/it] Feature Extraction: 85%|████████▍ | 55/65 [27:30<08:42, 52.22s/it] Feature Extraction: 86%|████████▌ | 56/65 [27:31<05:30, 36.70s/it] Feature Extraction: 88%|████████▊ | 57/65 [27:36<03:38, 27.26s/it] Feature Extraction: 89%|████████▉ | 58/65 [27:39<02:19, 19.91s/it] Feature Extraction: 91%|█████████ | 59/65 [27:41<01:27, 14.56s/it] Feature Extraction: 92%|█████████▏| 60/65 [27:42<00:53, 10.72s/it] Feature Extraction: 94%|█████████▍| 61/65 [27:43<00:31, 7.80s/it] Feature Extraction: 95%|█████████▌| 62/65 [27:44<00:16, 5.63s/it] Feature Extraction: 97%|█████████▋| 63/65 [27:47<00:09, 4.86s/it] Feature Extraction: 98%|█████████▊| 64/65 [27:49<00:04, 4.10s/it] Feature Extraction: 100%|██████████| 65/65 [27:50<00:00, 3.17s/it] Feature Extraction: 100%|██████████| 65/65 [27:50<00:00, 25.70s/it]
Dependency not available for matrix_profile, this feature will be disabled!
Feature Extraction: 0%| | 0/47 [00:00<?, ?it/s] Feature Extraction: 2%|▏ | 1/47 [00:08<06:53, 9.00s/it] Feature Extraction: 4%|▍ | 2/47 [00:09<02:50, 3.79s/it] Feature Extraction: 9%|▊ | 4/47 [00:09<01:04, 1.50s/it] Feature Extraction: 15%|█▍ | 7/47 [00:09<00:28, 1.38it/s] Feature Extraction: 17%|█▋ | 8/47 [00:09<00:23, 1.68it/s] Feature Extraction: 19%|█▉ | 9/47 [00:10<00:19, 1.99it/s] Feature Extraction: 26%|██▌ | 12/47 [00:10<00:09, 3.55it/s] Feature Extraction: 28%|██▊ | 13/47 [00:10<00:11, 3.08it/s] Feature Extraction: 30%|██▉ | 14/47 [00:19<01:07, 2.03s/it] Feature Extraction: 32%|███▏ | 15/47 [00:19<00:50, 1.59s/it] Feature Extraction: 36%|███▌ | 17/47 [00:19<00:29, 1.01it/s] Feature Extraction: 40%|████ | 19/47 [00:19<00:20, 1.38it/s] Feature Extraction: 43%|████▎ | 20/47 [00:20<00:17, 1.58it/s] Feature Extraction: 47%|████▋ | 22/47 [00:20<00:10, 2.32it/s] Feature Extraction: 51%|█████ | 24/47 [00:20<00:08, 2.65it/s] Feature Extraction: 55%|█████▌ | 26/47 [00:21<00:07, 2.78it/s] Feature Extraction: 57%|█████▋ | 27/47 [00:28<00:31, 1.55s/it] Feature Extraction: 60%|█████▉ | 28/47 [00:28<00:25, 1.34s/it] Feature Extraction: 62%|██████▏ | 29/47 [00:28<00:19, 1.06s/it] Feature Extraction: 64%|██████▍ | 30/47 [00:29<00:14, 1.20it/s] Feature Extraction: 66%|██████▌ | 31/47 [00:29<00:11, 1.44it/s] Feature Extraction: 70%|███████ | 33/47 [00:29<00:05, 2.34it/s] Feature Extraction: 72%|███████▏ | 34/47 [00:29<00:04, 2.80it/s] Feature Extraction: 74%|███████▍ | 35/47 [00:30<00:05, 2.39it/s] Feature Extraction: 77%|███████▋ | 36/47 [00:30<00:04, 2.35it/s] Feature Extraction: 83%|████████▎ | 39/47 [00:31<00:02, 3.04it/s] Feature Extraction: 85%|████████▌ | 40/47 [00:34<00:06, 1.03it/s] Feature Extraction: 87%|████████▋ | 41/47 [00:35<00:05, 1.13it/s] Feature Extraction: 89%|████████▉ | 42/47 [00:36<00:04, 1.09it/s] Feature Extraction: 94%|█████████▎| 44/47 [00:37<00:01, 1.58it/s] Feature Extraction: 96%|█████████▌| 45/47 [00:37<00:01, 1.86it/s] Feature Extraction: 98%|█████████▊| 46/47 [00:37<00:00, 2.22it/s] Feature Extraction: 100%|██████████| 47/47 [00:37<00:00, 1.26it/s]
Dependency not available for matrix_profile, this feature will be disabled!
Feature Extraction: 0%| | 0/47 [00:00<?, ?it/s] Feature Extraction: 2%|▏ | 1/47 [00:08<06:43, 8.78s/it] Feature Extraction: 4%|▍ | 2/47 [00:09<02:50, 3.79s/it] Feature Extraction: 6%|▋ | 3/47 [00:09<01:33, 2.12s/it] Feature Extraction: 15%|█▍ | 7/47 [00:09<00:24, 1.63it/s] Feature Extraction: 19%|█▉ | 9/47 [00:09<00:16, 2.34it/s] Feature Extraction: 23%|██▎ | 11/47 [00:09<00:12, 2.82it/s] Feature Extraction: 28%|██▊ | 13/47 [00:10<00:10, 3.30it/s] Feature Extraction: 30%|██▉ | 14/47 [00:18<00:57, 1.74s/it] Feature Extraction: 32%|███▏ | 15/47 [00:18<00:46, 1.45s/it] Feature Extraction: 34%|███▍ | 16/47 [00:18<00:35, 1.15s/it] Feature Extraction: 36%|███▌ | 17/47 [00:18<00:26, 1.11it/s] Feature Extraction: 40%|████ | 19/47 [00:19<00:16, 1.74it/s] Feature Extraction: 45%|████▍ | 21/47 [00:19<00:11, 2.28it/s] Feature Extraction: 49%|████▉ | 23/47 [00:19<00:07, 3.07it/s] Feature Extraction: 51%|█████ | 24/47 [00:19<00:06, 3.55it/s] Feature Extraction: 53%|█████▎ | 25/47 [00:20<00:06, 3.42it/s] Feature Extraction: 55%|█████▌ | 26/47 [00:20<00:05, 3.68it/s] Feature Extraction: 57%|█████▋ | 27/47 [00:27<00:41, 2.09s/it] Feature Extraction: 60%|█████▉ | 28/47 [00:28<00:29, 1.57s/it] Feature Extraction: 62%|██████▏ | 29/47 [00:28<00:21, 1.21s/it] Feature Extraction: 64%|██████▍ | 30/47 [00:28<00:16, 1.04it/s] Feature Extraction: 66%|██████▌ | 31/47 [00:28<00:11, 1.36it/s] Feature Extraction: 68%|██████▊ | 32/47 [00:29<00:08, 1.69it/s] Feature Extraction: 72%|███████▏ | 34/47 [00:29<00:04, 2.67it/s] Feature Extraction: 74%|███████▍ | 35/47 [00:29<00:03, 3.01it/s] Feature Extraction: 79%|███████▊ | 37/47 [00:29<00:02, 3.67it/s] Feature Extraction: 83%|████████▎ | 39/47 [00:30<00:02, 3.86it/s] Feature Extraction: 85%|████████▌ | 40/47 [00:34<00:07, 1.02s/it] Feature Extraction: 87%|████████▋ | 41/47 [00:35<00:06, 1.13s/it] Feature Extraction: 89%|████████▉ | 42/47 [00:35<00:04, 1.11it/s] Feature Extraction: 91%|█████████▏| 43/47 [00:36<00:02, 1.35it/s] Feature Extraction: 94%|█████████▎| 44/47 [00:36<00:01, 1.68it/s] Feature Extraction: 96%|█████████▌| 45/47 [00:36<00:01, 1.94it/s] Feature Extraction: 100%|██████████| 47/47 [00:36<00:00, 3.06it/s] Feature Extraction: 100%|██████████| 47/47 [00:36<00:00, 1.27it/s]
Dependency not available for matrix_profile, this feature will be disabled!
Feature Extraction: 0%| | 0/47 [00:00<?, ?it/s] Feature Extraction: 2%|▏ | 1/47 [00:08<06:23, 8.35s/it] Feature Extraction: 4%|▍ | 2/47 [00:08<02:38, 3.53s/it] Feature Extraction: 6%|▋ | 3/47 [00:08<01:28, 2.02s/it] Feature Extraction: 11%|█ | 5/47 [00:08<00:39, 1.07it/s] Feature Extraction: 13%|█▎ | 6/47 [00:09<00:28, 1.42it/s] Feature Extraction: 15%|█▍ | 7/47 [00:09<00:22, 1.74it/s] Feature Extraction: 21%|██▏ | 10/47 [00:09<00:10, 3.48it/s] Feature Extraction: 23%|██▎ | 11/47 [00:09<00:10, 3.38it/s] Feature Extraction: 28%|██▊ | 13/47 [00:10<00:08, 3.96it/s] Feature Extraction: 30%|██▉ | 14/47 [00:16<00:47, 1.44s/it] Feature Extraction: 32%|███▏ | 15/47 [00:18<00:50, 1.56s/it] Feature Extraction: 34%|███▍ | 16/47 [00:18<00:37, 1.22s/it] Feature Extraction: 36%|███▌ | 17/47 [00:18<00:29, 1.01it/s] Feature Extraction: 38%|███▊ | 18/47 [00:18<00:22, 1.30it/s] Feature Extraction: 43%|████▎ | 20/47 [00:19<00:13, 1.99it/s] Feature Extraction: 47%|████▋ | 22/47 [00:19<00:09, 2.60it/s] Feature Extraction: 49%|████▉ | 23/47 [00:19<00:08, 2.85it/s] Feature Extraction: 53%|█████▎ | 25/47 [00:20<00:06, 3.42it/s] Feature Extraction: 55%|█████▌ | 26/47 [00:20<00:05, 3.68it/s] Feature Extraction: 57%|█████▋ | 27/47 [00:25<00:27, 1.38s/it] Feature Extraction: 60%|█████▉ | 28/47 [00:27<00:31, 1.63s/it] Feature Extraction: 62%|██████▏ | 29/47 [00:27<00:22, 1.25s/it] Feature Extraction: 64%|██████▍ | 30/47 [00:28<00:17, 1.03s/it] Feature Extraction: 66%|██████▌ | 31/47 [00:28<00:13, 1.19it/s] Feature Extraction: 68%|██████▊ | 32/47 [00:28<00:09, 1.58it/s] Feature Extraction: 70%|███████ | 33/47 [00:28<00:07, 1.96it/s] Feature Extraction: 72%|███████▏ | 34/47 [00:29<00:05, 2.19it/s] Feature Extraction: 77%|███████▋ | 36/47 [00:29<00:03, 3.22it/s] Feature Extraction: 79%|███████▊ | 37/47 [00:29<00:03, 3.25it/s] Feature Extraction: 81%|████████ | 38/47 [00:30<00:02, 3.36it/s] Feature Extraction: 83%|████████▎ | 39/47 [00:30<00:02, 3.43it/s] Feature Extraction: 85%|████████▌ | 40/47 [00:34<00:09, 1.34s/it] Feature Extraction: 89%|████████▉ | 42/47 [00:35<00:04, 1.07it/s] Feature Extraction: 91%|█████████▏| 43/47 [00:35<00:03, 1.29it/s] Feature Extraction: 94%|█████████▎| 44/47 [00:36<00:02, 1.27it/s] Feature Extraction: 98%|█████████▊| 46/47 [00:36<00:00, 1.88it/s] Feature Extraction: 100%|██████████| 47/47 [00:37<00:00, 2.03it/s] Feature Extraction: 100%|██████████| 47/47 [00:37<00:00, 1.27it/s]
Dependency not available for matrix_profile, this feature will be disabled!
Feature Extraction: 0%| | 0/47 [00:00<?, ?it/s] Feature Extraction: 2%|▏ | 1/47 [00:08<06:50, 8.92s/it] Feature Extraction: 4%|▍ | 2/47 [00:09<02:54, 3.87s/it] Feature Extraction: 13%|█▎ | 6/47 [00:09<00:37, 1.10it/s] Feature Extraction: 19%|█▉ | 9/47 [00:09<00:19, 1.94it/s] Feature Extraction: 26%|██▌ | 12/47 [00:09<00:12, 2.86it/s] Feature Extraction: 30%|██▉ | 14/47 [00:18<00:47, 1.43s/it] Feature Extraction: 38%|███▊ | 18/47 [00:18<00:24, 1.20it/s] Feature Extraction: 43%|████▎ | 20/47 [00:18<00:17, 1.52it/s] Feature Extraction: 47%|████▋ | 22/47 [00:19<00:13, 1.90it/s] Feature Extraction: 51%|█████ | 24/47 [00:19<00:09, 2.35it/s] Feature Extraction: 53%|█████▎ | 25/47 [00:19<00:08, 2.49it/s] Feature Extraction: 55%|█████▌ | 26/47 [00:20<00:08, 2.56it/s] Feature Extraction: 57%|█████▋ | 27/47 [00:27<00:38, 1.94s/it] Feature Extraction: 60%|█████▉ | 28/47 [00:28<00:30, 1.60s/it] Feature Extraction: 64%|██████▍ | 30/47 [00:28<00:16, 1.00it/s] Feature Extraction: 66%|██████▌ | 31/47 [00:28<00:12, 1.24it/s] Feature Extraction: 68%|██████▊ | 32/47 [00:28<00:09, 1.51it/s] Feature Extraction: 77%|███████▋ | 36/47 [00:28<00:03, 3.33it/s] Feature Extraction: 81%|████████ | 38/47 [00:29<00:02, 3.76it/s] Feature Extraction: 85%|████████▌ | 40/47 [00:34<00:06, 1.05it/s] Feature Extraction: 87%|████████▋ | 41/47 [00:35<00:05, 1.10it/s] Feature Extraction: 89%|████████▉ | 42/47 [00:35<00:04, 1.22it/s] Feature Extraction: 91%|█████████▏| 43/47 [00:35<00:02, 1.52it/s] Feature Extraction: 94%|█████████▎| 44/47 [00:36<00:01, 1.75it/s] Feature Extraction: 96%|█████████▌| 45/47 [00:36<00:00, 2.21it/s] Feature Extraction: 100%|██████████| 47/47 [00:36<00:00, 3.12it/s] Feature Extraction: 100%|██████████| 47/47 [00:36<00:00, 1.29it/s]
Dependency not available for matrix_profile, this feature will be disabled!
Feature Extraction: 0%| | 0/49 [00:00<?, ?it/s] Feature Extraction: 2%|▏ | 1/49 [00:08<06:58, 8.72s/it] Feature Extraction: 6%|▌ | 3/49 [00:08<01:46, 2.31s/it] Feature Extraction: 8%|▊ | 4/49 [00:09<01:13, 1.62s/it] Feature Extraction: 14%|█▍ | 7/49 [00:09<00:28, 1.46it/s] Feature Extraction: 18%|█▊ | 9/49 [00:09<00:20, 1.92it/s] Feature Extraction: 24%|██▍ | 12/49 [00:10<00:12, 3.00it/s] Feature Extraction: 27%|██▋ | 13/49 [00:10<00:11, 3.10it/s] Feature Extraction: 29%|██▊ | 14/49 [00:18<01:02, 1.77s/it] Feature Extraction: 31%|███ | 15/49 [00:18<00:48, 1.43s/it] Feature Extraction: 33%|███▎ | 16/49 [00:18<00:36, 1.12s/it] Feature Extraction: 35%|███▍ | 17/49 [00:18<00:28, 1.11it/s] Feature Extraction: 39%|███▉ | 19/49 [00:18<00:17, 1.69it/s] Feature Extraction: 41%|████ | 20/49 [00:19<00:15, 1.84it/s] Feature Extraction: 43%|████▎ | 21/49 [00:19<00:12, 2.26it/s] Feature Extraction: 47%|████▋ | 23/49 [00:19<00:09, 2.81it/s] Feature Extraction: 53%|█████▎ | 26/49 [00:20<00:07, 2.96it/s] Feature Extraction: 55%|█████▌ | 27/49 [00:26<00:29, 1.35s/it] Feature Extraction: 57%|█████▋ | 28/49 [00:27<00:26, 1.28s/it] Feature Extraction: 59%|█████▉ | 29/49 [00:27<00:20, 1.03s/it] Feature Extraction: 61%|██████ | 30/49 [00:28<00:15, 1.20it/s] Feature Extraction: 63%|██████▎ | 31/49 [00:28<00:11, 1.51it/s] Feature Extraction: 65%|██████▌ | 32/49 [00:29<00:11, 1.49it/s] Feature Extraction: 67%|██████▋ | 33/49 [00:29<00:08, 1.95it/s] Feature Extraction: 69%|██████▉ | 34/49 [00:29<00:05, 2.53it/s] Feature Extraction: 71%|███████▏ | 35/49 [00:29<00:04, 3.12it/s] Feature Extraction: 73%|███████▎ | 36/49 [00:29<00:04, 3.19it/s] Feature Extraction: 78%|███████▊ | 38/49 [00:29<00:02, 4.39it/s] Feature Extraction: 80%|███████▉ | 39/49 [00:30<00:04, 2.46it/s] Feature Extraction: 82%|████████▏ | 40/49 [00:35<00:13, 1.52s/it] Feature Extraction: 84%|████████▎ | 41/49 [00:35<00:09, 1.16s/it] Feature Extraction: 86%|████████▌ | 42/49 [00:35<00:06, 1.15it/s] Feature Extraction: 88%|████████▊ | 43/49 [00:36<00:04, 1.27it/s] Feature Extraction: 90%|████████▉ | 44/49 [00:36<00:03, 1.45it/s] Feature Extraction: 92%|█████████▏| 45/49 [00:37<00:02, 1.75it/s] Feature Extraction: 96%|█████████▌| 47/49 [00:37<00:00, 2.14it/s] Feature Extraction: 98%|█████████▊| 48/49 [00:38<00:00, 2.64it/s] Feature Extraction: 100%|██████████| 49/49 [00:38<00:00, 1.29it/s]
Dependency not available for matrix_profile, this feature will be disabled!
Feature Extraction: 0%| | 0/47 [00:00<?, ?it/s] Feature Extraction: 2%|▏ | 1/47 [00:08<06:31, 8.51s/it] Feature Extraction: 4%|▍ | 2/47 [00:08<02:50, 3.79s/it] Feature Extraction: 13%|█▎ | 6/47 [00:09<00:36, 1.12it/s] Feature Extraction: 17%|█▋ | 8/47 [00:09<00:23, 1.65it/s] Feature Extraction: 23%|██▎ | 11/47 [00:09<00:13, 2.71it/s] Feature Extraction: 28%|██▊ | 13/47 [00:09<00:10, 3.31it/s] Feature Extraction: 32%|███▏ | 15/47 [00:18<00:46, 1.46s/it] Feature Extraction: 36%|███▌ | 17/47 [00:18<00:31, 1.05s/it] Feature Extraction: 40%|████ | 19/47 [00:18<00:21, 1.29it/s] Feature Extraction: 45%|████▍ | 21/47 [00:19<00:15, 1.66it/s] Feature Extraction: 51%|█████ | 24/47 [00:19<00:11, 2.03it/s] Feature Extraction: 55%|█████▌ | 26/47 [00:20<00:08, 2.39it/s] Feature Extraction: 57%|█████▋ | 27/47 [00:26<00:28, 1.40s/it] Feature Extraction: 60%|█████▉ | 28/47 [00:27<00:25, 1.34s/it] Feature Extraction: 64%|██████▍ | 30/47 [00:28<00:15, 1.08it/s] Feature Extraction: 68%|██████▊ | 32/47 [00:28<00:09, 1.52it/s] Feature Extraction: 72%|███████▏ | 34/47 [00:28<00:06, 2.13it/s] Feature Extraction: 77%|███████▋ | 36/47 [00:28<00:04, 2.72it/s] Feature Extraction: 79%|███████▊ | 37/47 [00:29<00:04, 2.34it/s] Feature Extraction: 81%|████████ | 38/47 [00:30<00:03, 2.35it/s] Feature Extraction: 83%|████████▎ | 39/47 [00:30<00:03, 2.29it/s] Feature Extraction: 85%|████████▌ | 40/47 [00:34<00:08, 1.27s/it] Feature Extraction: 87%|████████▋ | 41/47 [00:34<00:06, 1.01s/it] Feature Extraction: 89%|████████▉ | 42/47 [00:35<00:05, 1.03s/it] Feature Extraction: 91%|█████████▏| 43/47 [00:36<00:03, 1.15it/s] Feature Extraction: 96%|█████████▌| 45/47 [00:36<00:01, 1.91it/s] Feature Extraction: 100%|██████████| 47/47 [00:36<00:00, 2.25it/s] Feature Extraction: 100%|██████████| 47/47 [00:36<00:00, 1.27it/s]
Dependency not available for matrix_profile, this feature will be disabled!
Feature Extraction: 0%| | 0/49 [00:00<?, ?it/s] Feature Extraction: 2%|▏ | 1/49 [00:08<06:54, 8.63s/it] Feature Extraction: 4%|▍ | 2/49 [00:09<02:59, 3.81s/it] Feature Extraction: 8%|▊ | 4/49 [00:09<01:07, 1.50s/it] Feature Extraction: 12%|█▏ | 6/49 [00:09<00:38, 1.13it/s] Feature Extraction: 18%|█▊ | 9/49 [00:09<00:18, 2.17it/s] Feature Extraction: 22%|██▏ | 11/49 [00:10<00:13, 2.87it/s] Feature Extraction: 27%|██▋ | 13/49 [00:10<00:09, 3.78it/s] Feature Extraction: 31%|███ | 15/49 [00:17<00:47, 1.38s/it] Feature Extraction: 33%|███▎ | 16/49 [00:18<00:41, 1.26s/it] Feature Extraction: 39%|███▉ | 19/49 [00:18<00:22, 1.35it/s] Feature Extraction: 41%|████ | 20/49 [00:18<00:18, 1.58it/s] Feature Extraction: 43%|████▎ | 21/49 [00:19<00:15, 1.81it/s] Feature Extraction: 49%|████▉ | 24/49 [00:19<00:10, 2.43it/s] Feature Extraction: 51%|█████ | 25/49 [00:20<00:10, 2.37it/s] Feature Extraction: 53%|█████▎ | 26/49 [00:21<00:11, 2.08it/s] Feature Extraction: 55%|█████▌ | 27/49 [00:26<00:34, 1.56s/it] Feature Extraction: 57%|█████▋ | 28/49 [00:27<00:29, 1.39s/it] Feature Extraction: 59%|█████▉ | 29/49 [00:27<00:22, 1.12s/it] Feature Extraction: 61%|██████ | 30/49 [00:27<00:16, 1.13it/s] Feature Extraction: 63%|██████▎ | 31/49 [00:27<00:12, 1.49it/s] Feature Extraction: 65%|██████▌ | 32/49 [00:28<00:10, 1.63it/s] Feature Extraction: 67%|██████▋ | 33/49 [00:29<00:09, 1.63it/s] Feature Extraction: 69%|██████▉ | 34/49 [00:29<00:07, 2.06it/s] Feature Extraction: 71%|███████▏ | 35/49 [00:29<00:06, 2.14it/s] Feature Extraction: 76%|███████▌ | 37/49 [00:29<00:03, 3.55it/s] Feature Extraction: 78%|███████▊ | 38/49 [00:30<00:03, 3.45it/s] Feature Extraction: 80%|███████▉ | 39/49 [00:31<00:06, 1.54it/s] Feature Extraction: 82%|████████▏ | 40/49 [00:34<00:11, 1.27s/it] Feature Extraction: 84%|████████▎ | 41/49 [00:35<00:08, 1.10s/it] Feature Extraction: 86%|████████▌ | 42/49 [00:36<00:07, 1.06s/it] Feature Extraction: 88%|████████▊ | 43/49 [00:36<00:04, 1.26it/s] Feature Extraction: 92%|█████████▏| 45/49 [00:37<00:02, 1.50it/s] Feature Extraction: 98%|█████████▊| 48/49 [00:37<00:00, 2.68it/s] Feature Extraction: 100%|██████████| 49/49 [00:37<00:00, 3.02it/s] Feature Extraction: 100%|██████████| 49/49 [00:37<00:00, 1.29it/s]
imu-bvp_rr_Pilot03_id2_combi5.0-7.0-10.0-12.0-15.0
train
(101, 5485)
test
(978, 5484)
---LinearRegression---
adding new entry
subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval
0 Pilot02 0 linreg ... -9.864563 0.038776 0.364940
1 Pilot02 0 linreg ... -11.875765 0.070097 0.101171
2 Pilot02 0 linreg ... -11.069278 0.047023 0.271822
3 Pilot02 0 linreg ... -25.345517 0.016892 0.693177
4 Pilot02 0 linreg ... -15.299470 0.118749 0.005380
.. ... ... ... ... ... ... ...
512 Pilot02 3 linreg ... -6.796172 0.051448 0.069456
513 Pilot02 3 linreg ... -9.129009 0.001051 0.970434
514 Pilot02 3 linreg ... -5.420812 -0.014440 0.610586
515 Pilot02 3 linreg ... -25.639528 -0.037107 0.190544
516 Pilot03 2 linreg ... -1.298246 -0.065345 0.041042
[517 rows x 18 columns]
imu-bvp_rr_Pilot03_id2_combi5.0-7.0-10.0-12.0-17.0
train
(100, 5485)
test
(978, 5484)
---LinearRegression---
adding new entry
subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval
0 Pilot02 0 linreg ... -9.864563 0.038776 0.364940
1 Pilot02 0 linreg ... -11.875765 0.070097 0.101171
2 Pilot02 0 linreg ... -11.069278 0.047023 0.271822
3 Pilot02 0 linreg ... -25.345517 0.016892 0.693177
4 Pilot02 0 linreg ... -15.299470 0.118749 0.005380
.. ... ... ... ... ... ... ...
513 Pilot02 3 linreg ... -9.129009 0.001051 0.970434
514 Pilot02 3 linreg ... -5.420812 -0.014440 0.610586
515 Pilot02 3 linreg ... -25.639528 -0.037107 0.190544
516 Pilot03 2 linreg ... -1.298246 -0.065345 0.041042
517 Pilot03 2 linreg ... -1.320072 -0.068867 0.031281
[518 rows x 18 columns]
imu-bvp_rr_Pilot03_id2_combi5.0-7.0-10.0-12.0-20.0
train
(101, 5485)
test
(978, 5484)
---LinearRegression---
adding new entry
subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval
0 Pilot02 0 linreg ... -9.864563 0.038776 0.364940
1 Pilot02 0 linreg ... -11.875765 0.070097 0.101171
2 Pilot02 0 linreg ... -11.069278 0.047023 0.271822
3 Pilot02 0 linreg ... -25.345517 0.016892 0.693177
4 Pilot02 0 linreg ... -15.299470 0.118749 0.005380
.. ... ... ... ... ... ... ...
514 Pilot02 3 linreg ... -5.420812 -0.014440 0.610586
515 Pilot02 3 linreg ... -25.639528 -0.037107 0.190544
516 Pilot03 2 linreg ... -1.298246 -0.065345 0.041042
517 Pilot03 2 linreg ... -1.320072 -0.068867 0.031281
518 Pilot03 2 linreg ... -1.719100 -0.014930 0.640971
[519 rows x 18 columns]
imu-bvp_rr_Pilot03_id2_combi5.0-7.0-10.0-15.0-17.0
train
(101, 5485)
test
(978, 5484)
---LinearRegression---
adding new entry
subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval
0 Pilot02 0 linreg ... -9.864563 0.038776 0.364940
1 Pilot02 0 linreg ... -11.875765 0.070097 0.101171
2 Pilot02 0 linreg ... -11.069278 0.047023 0.271822
3 Pilot02 0 linreg ... -25.345517 0.016892 0.693177
4 Pilot02 0 linreg ... -15.299470 0.118749 0.005380
.. ... ... ... ... ... ... ...
515 Pilot02 3 linreg ... -25.639528 -0.037107 0.190544
516 Pilot03 2 linreg ... -1.298246 -0.065345 0.041042
517 Pilot03 2 linreg ... -1.320072 -0.068867 0.031281
518 Pilot03 2 linreg ... -1.719100 -0.014930 0.640971
519 Pilot03 2 linreg ... -1.205096 -0.094689 0.003036
[520 rows x 18 columns]
imu-bvp_rr_Pilot03_id2_combi5.0-7.0-10.0-15.0-20.0
train
(102, 5485)
test
(978, 5484)
---LinearRegression---
adding new entry
subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval
0 Pilot02 0 linreg ... -9.864563 0.038776 0.364940
1 Pilot02 0 linreg ... -11.875765 0.070097 0.101171
2 Pilot02 0 linreg ... -11.069278 0.047023 0.271822
3 Pilot02 0 linreg ... -25.345517 0.016892 0.693177
4 Pilot02 0 linreg ... -15.299470 0.118749 0.005380
.. ... ... ... ... ... ... ...
516 Pilot03 2 linreg ... -1.298246 -0.065345 0.041042
517 Pilot03 2 linreg ... -1.320072 -0.068867 0.031281
518 Pilot03 2 linreg ... -1.719100 -0.014930 0.640971
519 Pilot03 2 linreg ... -1.205096 -0.094689 0.003036
520 Pilot03 2 linreg ... -1.369422 -0.058643 0.066776
[521 rows x 18 columns]
imu-bvp_rr_Pilot03_id2_combi5.0-7.0-10.0-17.0-20.0
train
(101, 5485)
test
(978, 5484)
---LinearRegression---
adding new entry
subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval
0 Pilot02 0 linreg ... -9.864563 0.038776 0.364940
1 Pilot02 0 linreg ... -11.875765 0.070097 0.101171
2 Pilot02 0 linreg ... -11.069278 0.047023 0.271822
3 Pilot02 0 linreg ... -25.345517 0.016892 0.693177
4 Pilot02 0 linreg ... -15.299470 0.118749 0.005380
.. ... ... ... ... ... ... ...
517 Pilot03 2 linreg ... -1.320072 -0.068867 0.031281
518 Pilot03 2 linreg ... -1.719100 -0.014930 0.640971
519 Pilot03 2 linreg ... -1.205096 -0.094689 0.003036
520 Pilot03 2 linreg ... -1.369422 -0.058643 0.066776
521 Pilot03 2 linreg ... -1.410067 -0.043944 0.169702
[522 rows x 18 columns]
imu-bvp_rr_Pilot03_id2_combi5.0-7.0-12.0-15.0-17.0
train
(101, 5485)
test
(978, 5484)
---LinearRegression---
adding new entry
subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval
0 Pilot02 0 linreg ... -9.864563 0.038776 0.364940
1 Pilot02 0 linreg ... -11.875765 0.070097 0.101171
2 Pilot02 0 linreg ... -11.069278 0.047023 0.271822
3 Pilot02 0 linreg ... -25.345517 0.016892 0.693177
4 Pilot02 0 linreg ... -15.299470 0.118749 0.005380
.. ... ... ... ... ... ... ...
518 Pilot03 2 linreg ... -1.719100 -0.014930 0.640971
519 Pilot03 2 linreg ... -1.205096 -0.094689 0.003036
520 Pilot03 2 linreg ... -1.369422 -0.058643 0.066776
521 Pilot03 2 linreg ... -1.410067 -0.043944 0.169702
522 Pilot03 2 linreg ... -1.209088 -0.069918 0.028784
[523 rows x 18 columns]
imu-bvp_rr_Pilot03_id2_combi5.0-7.0-12.0-15.0-20.0
train
(102, 5485)
test
(978, 5484)
---LinearRegression---
adding new entry
subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval
0 Pilot02 0 linreg ... -9.864563 0.038776 0.364940
1 Pilot02 0 linreg ... -11.875765 0.070097 0.101171
2 Pilot02 0 linreg ... -11.069278 0.047023 0.271822
3 Pilot02 0 linreg ... -25.345517 0.016892 0.693177
4 Pilot02 0 linreg ... -15.299470 0.118749 0.005380
.. ... ... ... ... ... ... ...
519 Pilot03 2 linreg ... -1.205096 -0.094689 0.003036
520 Pilot03 2 linreg ... -1.369422 -0.058643 0.066776
521 Pilot03 2 linreg ... -1.410067 -0.043944 0.169702
522 Pilot03 2 linreg ... -1.209088 -0.069918 0.028784
523 Pilot03 2 linreg ... -1.500180 -0.038757 0.225913
[524 rows x 18 columns]
imu-bvp_rr_Pilot03_id2_combi5.0-7.0-12.0-17.0-20.0
train
(101, 5485)
test
(978, 5484)
---LinearRegression---
adding new entry
subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval
0 Pilot02 0 linreg ... -9.864563 0.038776 0.364940
1 Pilot02 0 linreg ... -11.875765 0.070097 0.101171
2 Pilot02 0 linreg ... -11.069278 0.047023 0.271822
3 Pilot02 0 linreg ... -25.345517 0.016892 0.693177
4 Pilot02 0 linreg ... -15.299470 0.118749 0.005380
.. ... ... ... ... ... ... ...
520 Pilot03 2 linreg ... -1.369422 -0.058643 0.066776
521 Pilot03 2 linreg ... -1.410067 -0.043944 0.169702
522 Pilot03 2 linreg ... -1.209088 -0.069918 0.028784
523 Pilot03 2 linreg ... -1.500180 -0.038757 0.225913
524 Pilot03 2 linreg ... -1.486533 -0.028625 0.371199
[525 rows x 18 columns]
imu-bvp_rr_Pilot03_id2_combi5.0-7.0-15.0-17.0-20.0
train
(102, 5485)
test
(978, 5484)
---LinearRegression---
adding new entry
subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval
0 Pilot02 0 linreg ... -9.864563 0.038776 0.364940
1 Pilot02 0 linreg ... -11.875765 0.070097 0.101171
2 Pilot02 0 linreg ... -11.069278 0.047023 0.271822
3 Pilot02 0 linreg ... -25.345517 0.016892 0.693177
4 Pilot02 0 linreg ... -15.299470 0.118749 0.005380
.. ... ... ... ... ... ... ...
521 Pilot03 2 linreg ... -1.410067 -0.043944 0.169702
522 Pilot03 2 linreg ... -1.209088 -0.069918 0.028784
523 Pilot03 2 linreg ... -1.500180 -0.038757 0.225913
524 Pilot03 2 linreg ... -1.486533 -0.028625 0.371199
525 Pilot03 2 linreg ... -1.234225 -0.050201 0.116671
[526 rows x 18 columns]
imu-bvp_rr_Pilot03_id2_combi5.0-10.0-12.0-15.0-17.0
train
(101, 5485)
test
(978, 5484)
---LinearRegression---
adding new entry
subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval
0 Pilot02 0 linreg ... -9.864563 0.038776 0.364940
1 Pilot02 0 linreg ... -11.875765 0.070097 0.101171
2 Pilot02 0 linreg ... -11.069278 0.047023 0.271822
3 Pilot02 0 linreg ... -25.345517 0.016892 0.693177
4 Pilot02 0 linreg ... -15.299470 0.118749 0.005380
.. ... ... ... ... ... ... ...
522 Pilot03 2 linreg ... -1.209088 -0.069918 0.028784
523 Pilot03 2 linreg ... -1.500180 -0.038757 0.225913
524 Pilot03 2 linreg ... -1.486533 -0.028625 0.371199
525 Pilot03 2 linreg ... -1.234225 -0.050201 0.116671
526 Pilot03 2 linreg ... -0.895766 -0.081948 0.010353
[527 rows x 18 columns]
imu-bvp_rr_Pilot03_id2_combi5.0-10.0-12.0-15.0-20.0
train
(102, 5485)
test
(978, 5484)
---LinearRegression---
adding new entry
subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval
0 Pilot02 0 linreg ... -9.864563 0.038776 0.364940
1 Pilot02 0 linreg ... -11.875765 0.070097 0.101171
2 Pilot02 0 linreg ... -11.069278 0.047023 0.271822
3 Pilot02 0 linreg ... -25.345517 0.016892 0.693177
4 Pilot02 0 linreg ... -15.299470 0.118749 0.005380
.. ... ... ... ... ... ... ...
523 Pilot03 2 linreg ... -1.500180 -0.038757 0.225913
524 Pilot03 2 linreg ... -1.486533 -0.028625 0.371199
525 Pilot03 2 linreg ... -1.234225 -0.050201 0.116671
526 Pilot03 2 linreg ... -0.895766 -0.081948 0.010353
527 Pilot03 2 linreg ... -1.147796 -0.053428 0.094935
[528 rows x 18 columns]
imu-bvp_rr_Pilot03_id2_combi5.0-10.0-12.0-17.0-20.0
train
(101, 5485)
test
(978, 5484)
---LinearRegression---
adding new entry
subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval
0 Pilot02 0 linreg ... -9.864563 0.038776 0.364940
1 Pilot02 0 linreg ... -11.875765 0.070097 0.101171
2 Pilot02 0 linreg ... -11.069278 0.047023 0.271822
3 Pilot02 0 linreg ... -25.345517 0.016892 0.693177
4 Pilot02 0 linreg ... -15.299470 0.118749 0.005380
.. ... ... ... ... ... ... ...
524 Pilot03 2 linreg ... -1.486533 -0.028625 0.371199
525 Pilot03 2 linreg ... -1.234225 -0.050201 0.116671
526 Pilot03 2 linreg ... -0.895766 -0.081948 0.010353
527 Pilot03 2 linreg ... -1.147796 -0.053428 0.094935
528 Pilot03 2 linreg ... -1.169716 -0.041156 0.198449
[529 rows x 18 columns]
imu-bvp_rr_Pilot03_id2_combi5.0-10.0-15.0-17.0-20.0
train
(102, 5485)
test
(978, 5484)
---LinearRegression---
adding new entry
subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval
0 Pilot02 0 linreg ... -9.864563 0.038776 0.364940
1 Pilot02 0 linreg ... -11.875765 0.070097 0.101171
2 Pilot02 0 linreg ... -11.069278 0.047023 0.271822
3 Pilot02 0 linreg ... -25.345517 0.016892 0.693177
4 Pilot02 0 linreg ... -15.299470 0.118749 0.005380
.. ... ... ... ... ... ... ...
525 Pilot03 2 linreg ... -1.234225 -0.050201 0.116671
526 Pilot03 2 linreg ... -0.895766 -0.081948 0.010353
527 Pilot03 2 linreg ... -1.147796 -0.053428 0.094935
528 Pilot03 2 linreg ... -1.169716 -0.041156 0.198449
529 Pilot03 2 linreg ... -0.941939 -0.074300 0.020135
[530 rows x 18 columns]
imu-bvp_rr_Pilot03_id2_combi5.0-12.0-15.0-17.0-20.0
train
(102, 5485)
test
(978, 5484)
---LinearRegression---
adding new entry
subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval
0 Pilot02 0 linreg ... -9.864563 0.038776 0.364940
1 Pilot02 0 linreg ... -11.875765 0.070097 0.101171
2 Pilot02 0 linreg ... -11.069278 0.047023 0.271822
3 Pilot02 0 linreg ... -25.345517 0.016892 0.693177
4 Pilot02 0 linreg ... -15.299470 0.118749 0.005380
.. ... ... ... ... ... ... ...
526 Pilot03 2 linreg ... -0.895766 -0.081948 0.010353
527 Pilot03 2 linreg ... -1.147796 -0.053428 0.094935
528 Pilot03 2 linreg ... -1.169716 -0.041156 0.198449
529 Pilot03 2 linreg ... -0.941939 -0.074300 0.020135
530 Pilot03 2 linreg ... -0.999938 -0.044756 0.161942
[531 rows x 18 columns]
imu-bvp_rr_Pilot03_id2_combi7.0-10.0-12.0-15.0-17.0
train
(101, 5485)
test
(978, 5484)
---LinearRegression---
adding new entry
subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval
0 Pilot02 0 linreg ... -9.864563 0.038776 0.364940
1 Pilot02 0 linreg ... -11.875765 0.070097 0.101171
2 Pilot02 0 linreg ... -11.069278 0.047023 0.271822
3 Pilot02 0 linreg ... -25.345517 0.016892 0.693177
4 Pilot02 0 linreg ... -15.299470 0.118749 0.005380
.. ... ... ... ... ... ... ...
527 Pilot03 2 linreg ... -1.147796 -0.053428 0.094935
528 Pilot03 2 linreg ... -1.169716 -0.041156 0.198449
529 Pilot03 2 linreg ... -0.941939 -0.074300 0.020135
530 Pilot03 2 linreg ... -0.999938 -0.044756 0.161942
531 Pilot03 2 linreg ... -0.445521 -0.103372 0.001207
[532 rows x 18 columns]
imu-bvp_rr_Pilot03_id2_combi7.0-10.0-12.0-15.0-20.0
train
(102, 5485)
test
(978, 5484)
---LinearRegression---
adding new entry
subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval
0 Pilot02 0 linreg ... -9.864563 0.038776 0.364940
1 Pilot02 0 linreg ... -11.875765 0.070097 0.101171
2 Pilot02 0 linreg ... -11.069278 0.047023 0.271822
3 Pilot02 0 linreg ... -25.345517 0.016892 0.693177
4 Pilot02 0 linreg ... -15.299470 0.118749 0.005380
.. ... ... ... ... ... ... ...
528 Pilot03 2 linreg ... -1.169716 -0.041156 0.198449
529 Pilot03 2 linreg ... -0.941939 -0.074300 0.020135
530 Pilot03 2 linreg ... -0.999938 -0.044756 0.161942
531 Pilot03 2 linreg ... -0.445521 -0.103372 0.001207
532 Pilot03 2 linreg ... -0.629643 -0.066178 0.038526
[533 rows x 18 columns]
imu-bvp_rr_Pilot03_id2_combi7.0-10.0-12.0-17.0-20.0
train
(101, 5485)
test
(978, 5484)
---LinearRegression---
adding new entry
subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval
0 Pilot02 0 linreg ... -9.864563 0.038776 0.364940
1 Pilot02 0 linreg ... -11.875765 0.070097 0.101171
2 Pilot02 0 linreg ... -11.069278 0.047023 0.271822
3 Pilot02 0 linreg ... -25.345517 0.016892 0.693177
4 Pilot02 0 linreg ... -15.299470 0.118749 0.005380
.. ... ... ... ... ... ... ...
529 Pilot03 2 linreg ... -0.941939 -0.074300 0.020135
530 Pilot03 2 linreg ... -0.999938 -0.044756 0.161942
531 Pilot03 2 linreg ... -0.445521 -0.103372 0.001207
532 Pilot03 2 linreg ... -0.629643 -0.066178 0.038526
533 Pilot03 2 linreg ... -0.683093 -0.060810 0.057299
[534 rows x 18 columns]
imu-bvp_rr_Pilot03_id2_combi7.0-10.0-15.0-17.0-20.0
train
(102, 5485)
test
(978, 5484)
---LinearRegression---
adding new entry
subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval
0 Pilot02 0 linreg ... -9.864563 0.038776 0.364940
1 Pilot02 0 linreg ... -11.875765 0.070097 0.101171
2 Pilot02 0 linreg ... -11.069278 0.047023 0.271822
3 Pilot02 0 linreg ... -25.345517 0.016892 0.693177
4 Pilot02 0 linreg ... -15.299470 0.118749 0.005380
.. ... ... ... ... ... ... ...
530 Pilot03 2 linreg ... -0.999938 -0.044756 0.161942
531 Pilot03 2 linreg ... -0.445521 -0.103372 0.001207
532 Pilot03 2 linreg ... -0.629643 -0.066178 0.038526
533 Pilot03 2 linreg ... -0.683093 -0.060810 0.057299
534 Pilot03 2 linreg ... -0.579251 -0.067470 0.034885
[535 rows x 18 columns]
imu-bvp_rr_Pilot03_id2_combi7.0-12.0-15.0-17.0-20.0
train
(102, 5485)
test
(978, 5484)
---LinearRegression---
adding new entry
subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval
0 Pilot02 0 linreg ... -9.864563 0.038776 0.364940
1 Pilot02 0 linreg ... -11.875765 0.070097 0.101171
2 Pilot02 0 linreg ... -11.069278 0.047023 0.271822
3 Pilot02 0 linreg ... -25.345517 0.016892 0.693177
4 Pilot02 0 linreg ... -15.299470 0.118749 0.005380
.. ... ... ... ... ... ... ...
531 Pilot03 2 linreg ... -0.445521 -0.103372 0.001207
532 Pilot03 2 linreg ... -0.629643 -0.066178 0.038526
533 Pilot03 2 linreg ... -0.683093 -0.060810 0.057299
534 Pilot03 2 linreg ... -0.579251 -0.067470 0.034885
535 Pilot03 2 linreg ... -0.584314 -0.068252 0.032827
[536 rows x 18 columns]
imu-bvp_rr_Pilot03_id2_combi10.0-12.0-15.0-17.0-20.0
train
(102, 5485)
test
(978, 5484)
---LinearRegression---
adding new entry
subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval
0 Pilot02 0 linreg ... -9.864563 0.038776 0.364940
1 Pilot02 0 linreg ... -11.875765 0.070097 0.101171
2 Pilot02 0 linreg ... -11.069278 0.047023 0.271822
3 Pilot02 0 linreg ... -25.345517 0.016892 0.693177
4 Pilot02 0 linreg ... -15.299470 0.118749 0.005380
.. ... ... ... ... ... ... ...
532 Pilot03 2 linreg ... -0.629643 -0.066178 0.038526
533 Pilot03 2 linreg ... -0.683093 -0.060810 0.057299
534 Pilot03 2 linreg ... -0.579251 -0.067470 0.034885
535 Pilot03 2 linreg ... -0.584314 -0.068252 0.032827
536 Pilot03 2 linreg ... -0.325231 -0.063084 0.048580
[537 rows x 18 columns]
Namespace(data_input='imu-bvp', feature_method='tsfresh', lbl_str='pss', model='linreg', overwrite=1, subject=3, test_standing=1, train_len=5, win_shift=0.2, win_size=12)
......
2023-11-26 23:59:27.557260: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.
To enable the following instructions: AVX2 AVX512F FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.
Using TensorFlow backend
Namespace(data_input='imu-bvp', feature_method='tsfresh', lbl_str='pss', model='elastic', overwrite=0, subject=2, test_standing=1, train_len=5, win_shift=0.2, win_size=12)
Using pre-set data id: 3
imu-bvp_rr_Pilot02_id3_combi5.0-7.0-10.0-12.0-15.0
train
(100, 5485)
test
(1246, 5484)
---ElasticNet---
/usr/local/lib/python3.8/dist-packages/sklearn/linear_model/_coordinate_descent.py:1563: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
y = column_or_1d(y, warn=True)
adding new entry
subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval
0 Pilot02 0 linreg ... -9.864563 0.038776 0.364940
1 Pilot02 0 linreg ... -11.875765 0.070097 0.101171
2 Pilot02 0 linreg ... -11.069278 0.047023 0.271822
3 Pilot02 0 linreg ... -25.345517 0.016892 0.693177
4 Pilot02 0 linreg ... -15.299470 0.118749 0.005380
.. ... ... ... ... ... ... ...
546 Pilot02 3 linreg ... -16.926541 -0.011023 0.697489
547 Pilot02 3 linreg ... -0.948799 -0.007771 0.784065
548 Pilot03 2 elastic ... -1.758438 -0.126951 0.000069
549 Pilot03 2 elastic ... -1.925223 -0.070755 0.026920
550 Pilot02 3 elastic ... -5.596573 0.107220 0.000150
[551 rows x 18 columns]
imu-bvp_rr_Pilot02_id3_combi5.0-7.0-10.0-12.0-17.0
train
(100, 5485)
test
(1246, 5484)
---ElasticNet---
/usr/local/lib/python3.8/dist-packages/sklearn/linear_model/_coordinate_descent.py:1563: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
y = column_or_1d(y, warn=True)
adding new entry
subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval
0 Pilot02 0 linreg ... -9.864563 0.038776 0.364940
1 Pilot02 0 linreg ... -11.875765 0.070097 0.101171
2 Pilot02 0 linreg ... -11.069278 0.047023 0.271822
3 Pilot02 0 linreg ... -25.345517 0.016892 0.693177
4 Pilot02 0 linreg ... -15.299470 0.118749 0.005380
.. ... ... ... ... ... ... ...
549 Pilot03 2 elastic ... -1.925223 -0.070755 0.026920
550 Pilot02 3 elastic ... -5.596573 0.107220 0.000150
551 Pilot03 2 elastic ... -2.161178 -0.052695 0.099562
552 Pilot03 2 elastic ... -1.996716 -0.129399 0.000049
553 Pilot02 3 elastic ... -7.182356 0.069423 0.014245
[554 rows x 18 columns]
imu-bvp_rr_Pilot02_id3_combi5.0-7.0-10.0-12.0-20.0
train
(100, 5485)
test
(1246, 5484)
---ElasticNet---
/usr/local/lib/python3.8/dist-packages/sklearn/linear_model/_coordinate_descent.py:1563: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
y = column_or_1d(y, warn=True)
/usr/local/lib/python3.8/dist-packages/scipy/stats/_stats_py.py:4424: ConstantInputWarning: An input array is constant; the correlation coefficient is not defined.
warnings.warn(stats.ConstantInputWarning(msg))
adding new entry
subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval
0 Pilot02 0 linreg ... -9.864563 0.038776 0.364940
1 Pilot02 0 linreg ... -11.875765 0.070097 0.101171
2 Pilot02 0 linreg ... -11.069278 0.047023 0.271822
3 Pilot02 0 linreg ... -25.345517 0.016892 0.693177
4 Pilot02 0 linreg ... -15.299470 0.118749 0.005380
.. ... ... ... ... ... ... ...
552 Pilot03 2 elastic ... -1.996716 -0.129399 0.000049
553 Pilot02 3 elastic ... -7.182356 0.069423 0.014245
554 Pilot03 2 elastic ... -2.473361 -0.103564 0.001181
555 Pilot03 2 elastic ... -2.166505 -0.051172 0.109753
556 Pilot02 3 elastic ... -3.104293 NaN NaN
[557 rows x 18 columns]
imu-bvp_rr_Pilot02_id3_combi5.0-7.0-10.0-15.0-17.0
train
(100, 5485)
test
(1246, 5484)
---ElasticNet---
/usr/local/lib/python3.8/dist-packages/sklearn/linear_model/_coordinate_descent.py:1563: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
y = column_or_1d(y, warn=True)
adding new entry
subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval
0 Pilot02 0 linreg ... -9.864563 0.038776 0.364940
1 Pilot02 0 linreg ... -11.875765 0.070097 0.101171
2 Pilot02 0 linreg ... -11.069278 0.047023 0.271822
3 Pilot02 0 linreg ... -25.345517 0.016892 0.693177
4 Pilot02 0 linreg ... -15.299470 0.118749 0.005380
.. ... ... ... ... ... ... ...
554 Pilot03 2 elastic ... -2.473361 -0.103564 0.001181
555 Pilot03 2 elastic ... -2.166505 -0.051172 0.109753
556 Pilot02 3 elastic ... -3.104293 NaN NaN
557 Pilot03 2 elastic ... -1.913436 -0.117161 0.000241
558 Pilot02 3 elastic ... -5.419605 0.029585 0.296716
[559 rows x 18 columns]
imu-bvp_rr_Pilot02_id3_combi5.0-7.0-10.0-15.0-20.0
train
(100, 5485)
test
(1246, 5484)
---ElasticNet---
/usr/local/lib/python3.8/dist-packages/sklearn/linear_model/_coordinate_descent.py:1563: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
y = column_or_1d(y, warn=True)
adding new entry
subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval
0 Pilot02 0 linreg ... -9.864563 0.038776 0.364940
1 Pilot02 0 linreg ... -11.875765 0.070097 0.101171
2 Pilot02 0 linreg ... -11.069278 0.047023 0.271822
3 Pilot02 0 linreg ... -25.345517 0.016892 0.693177
4 Pilot02 0 linreg ... -15.299470 0.118749 0.005380
.. ... ... ... ... ... ... ...
558 Pilot02 3 elastic ... -5.419605 0.029585 0.296716
559 Pilot03 2 elastic ... -2.370444 -0.110486 0.000537
560 Pilot03 2 elastic ... -2.268817 -0.092573 0.003761
561 Pilot03 2 elastic ... -1.844984 -0.102995 0.001258
562 Pilot02 3 elastic ... -1.737720 0.018534 0.513349
[563 rows x 18 columns]
imu-bvp_rr_Pilot02_id3_combi5.0-7.0-10.0-17.0-20.0
train
(100, 5485)
test
(1246, 5484)
---ElasticNet---
/usr/local/lib/python3.8/dist-packages/sklearn/linear_model/_coordinate_descent.py:1563: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
y = column_or_1d(y, warn=True)
adding new entry
subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval
0 Pilot02 0 linreg ... -9.864563 0.038776 0.364940
1 Pilot02 0 linreg ... -11.875765 0.070097 0.101171
2 Pilot02 0 linreg ... -11.069278 0.047023 0.271822
3 Pilot02 0 linreg ... -25.345517 0.016892 0.693177
4 Pilot02 0 linreg ... -15.299470 0.118749 0.005380
.. ... ... ... ... ... ... ...
561 Pilot03 2 elastic ... -1.844984 -0.102995 0.001258
562 Pilot02 3 elastic ... -1.737720 0.018534 0.513349
563 Pilot03 2 elastic ... -2.074848 -0.111489 0.000478
564 Pilot03 2 elastic ... -2.468988 -0.096367 0.002554
565 Pilot02 3 elastic ... -1.610216 -0.007174 0.800294
[566 rows x 18 columns]
imu-bvp_rr_Pilot02_id3_combi5.0-7.0-12.0-15.0-17.0
train
(100, 5485)
test
(1246, 5484)
---ElasticNet---
/usr/local/lib/python3.8/dist-packages/sklearn/linear_model/_coordinate_descent.py:1563: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
y = column_or_1d(y, warn=True)
adding new entry
subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval
0 Pilot02 0 linreg ... -9.864563 0.038776 0.364940
1 Pilot02 0 linreg ... -11.875765 0.070097 0.101171
2 Pilot02 0 linreg ... -11.069278 0.047023 0.271822
3 Pilot02 0 linreg ... -25.345517 0.016892 0.693177
4 Pilot02 0 linreg ... -15.299470 0.118749 0.005380
.. ... ... ... ... ... ... ...
564 Pilot03 2 elastic ... -2.468988 -0.096367 0.002554
565 Pilot02 3 elastic ... -1.610216 -0.007174 0.800294
566 Pilot03 2 elastic ... -2.274461 -0.073805 0.020982
567 Pilot03 2 elastic ... -1.732794 -0.102280 0.001360
568 Pilot02 3 elastic ... -3.323004 0.042106 0.137421
[569 rows x 18 columns]
imu-bvp_rr_Pilot02_id3_combi5.0-7.0-12.0-15.0-20.0
train
(100, 5485)
test
(1246, 5484)
---ElasticNet---
/usr/local/lib/python3.8/dist-packages/sklearn/linear_model/_coordinate_descent.py:1563: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
y = column_or_1d(y, warn=True)
adding new entry
subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval
0 Pilot02 0 linreg ... -9.864563 0.038776 3.649402e-01
1 Pilot02 0 linreg ... -11.875765 0.070097 1.011711e-01
2 Pilot02 0 linreg ... -11.069278 0.047023 2.718220e-01
3 Pilot02 0 linreg ... -25.345517 0.016892 6.931765e-01
4 Pilot02 0 linreg ... -15.299470 0.118749 5.380273e-03
.. ... ... ... ... ... ... ...
567 Pilot03 2 elastic ... -1.732794 -0.102280 1.360380e-03
568 Pilot02 3 elastic ... -3.323004 0.042106 1.374214e-01
569 Pilot03 2 elastic ... -1.298003 -0.060662 5.790618e-02
570 Pilot03 2 elastic ... -1.030237 -0.161102 4.088040e-07
571 Pilot02 3 elastic ... -2.548343 0.009285 7.433378e-01
[572 rows x 18 columns]
imu-bvp_rr_Pilot02_id3_combi5.0-7.0-12.0-17.0-20.0
train
(100, 5485)
test
(1246, 5484)
---ElasticNet---
/usr/local/lib/python3.8/dist-packages/sklearn/linear_model/_coordinate_descent.py:1563: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
y = column_or_1d(y, warn=True)
adding new entry
subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval
0 Pilot02 0 linreg ... -9.864563 0.038776 3.649402e-01
1 Pilot02 0 linreg ... -11.875765 0.070097 1.011711e-01
2 Pilot02 0 linreg ... -11.069278 0.047023 2.718220e-01
3 Pilot02 0 linreg ... -25.345517 0.016892 6.931765e-01
4 Pilot02 0 linreg ... -15.299470 0.118749 5.380273e-03
.. ... ... ... ... ... ... ...
569 Pilot03 2 elastic ... -1.298003 -0.060662 5.790618e-02
570 Pilot03 2 elastic ... -1.030237 -0.161102 4.088040e-07
571 Pilot02 3 elastic ... -2.548343 0.009285 7.433378e-01
572 Pilot03 2 elastic ... -1.815615 -0.193334 1.087464e-09
573 Pilot02 3 elastic ... -1.880238 -0.040916 1.488975e-01
[574 rows x 18 columns]
imu-bvp_rr_Pilot02_id3_combi5.0-7.0-15.0-17.0-20.0
train
(100, 5485)
test
(1246, 5484)
---ElasticNet---
/usr/local/lib/python3.8/dist-packages/sklearn/linear_model/_coordinate_descent.py:1563: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
y = column_or_1d(y, warn=True)
adding new entry
subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval
0 Pilot02 0 linreg ... -9.864563 0.038776 3.649402e-01
1 Pilot02 0 linreg ... -11.875765 0.070097 1.011711e-01
2 Pilot02 0 linreg ... -11.069278 0.047023 2.718220e-01
3 Pilot02 0 linreg ... -25.345517 0.016892 6.931765e-01
4 Pilot02 0 linreg ... -15.299470 0.118749 5.380273e-03
.. ... ... ... ... ... ... ...
572 Pilot03 2 elastic ... -1.815615 -0.193334 1.087464e-09
573 Pilot02 3 elastic ... -1.880238 -0.040916 1.488975e-01
574 Pilot03 2 elastic ... -1.328308 -0.136510 1.838231e-05
575 Pilot03 2 elastic ... -1.926497 -0.186432 4.243797e-09
576 Pilot02 3 elastic ... -2.947342 -0.007501 7.913772e-01
[577 rows x 18 columns]
imu-bvp_rr_Pilot02_id3_combi5.0-10.0-12.0-15.0-17.0
train
(100, 5485)
test
(1246, 5484)
---ElasticNet---
/usr/local/lib/python3.8/dist-packages/sklearn/linear_model/_coordinate_descent.py:1563: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
y = column_or_1d(y, warn=True)
/usr/local/lib/python3.8/dist-packages/scipy/stats/_stats_py.py:4461: NearConstantInputWarning: An input array is nearly constant; the computed correlation coefficient may be inaccurate.
warnings.warn(stats.NearConstantInputWarning(msg))
adding new entry
subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval
0 Pilot02 0 linreg ... -9.864563 3.877603e-02 3.649402e-01
1 Pilot02 0 linreg ... -11.875765 7.009716e-02 1.011711e-01
2 Pilot02 0 linreg ... -11.069278 4.702307e-02 2.718220e-01
3 Pilot02 0 linreg ... -25.345517 1.689162e-02 6.931765e-01
4 Pilot02 0 linreg ... -15.299470 1.187485e-01 5.380273e-03
.. ... ... ... ... ... ... ...
574 Pilot03 2 elastic ... -1.328308 -1.365100e-01 1.838231e-05
575 Pilot03 2 elastic ... -1.926497 -1.864318e-01 4.243797e-09
576 Pilot02 3 elastic ... -2.947342 -7.501254e-03 7.913772e-01
577 Pilot03 2 elastic ... -0.806993 -1.393941e-01 1.213925e-05
578 Pilot02 3 elastic ... -2.285661 6.344185e-07 9.999821e-01
[579 rows x 18 columns]
imu-bvp_rr_Pilot02_id3_combi5.0-10.0-12.0-15.0-20.0
train
(100, 5485)
test
(1246, 5484)
---ElasticNet---
/usr/local/lib/python3.8/dist-packages/sklearn/linear_model/_coordinate_descent.py:1563: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
y = column_or_1d(y, warn=True)
adding new entry
subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval
0 Pilot02 0 linreg ... -9.864563 3.877603e-02 0.364940
1 Pilot02 0 linreg ... -11.875765 7.009716e-02 0.101171
2 Pilot02 0 linreg ... -11.069278 4.702307e-02 0.271822
3 Pilot02 0 linreg ... -25.345517 1.689162e-02 0.693177
4 Pilot02 0 linreg ... -15.299470 1.187485e-01 0.005380
.. ... ... ... ... ... ... ...
576 Pilot02 3 elastic ... -2.947342 -7.501254e-03 0.791377
577 Pilot03 2 elastic ... -0.806993 -1.393941e-01 0.000012
578 Pilot02 3 elastic ... -2.285661 6.344185e-07 0.999982
579 Pilot03 2 elastic ... -0.123614 1.726530e-02 0.589689
580 Pilot02 3 elastic ... -1.856123 -3.904010e-02 0.168448
[581 rows x 18 columns]
imu-bvp_rr_Pilot02_id3_combi5.0-10.0-12.0-17.0-20.0
train
(100, 5485)
test
(1246, 5484)
---ElasticNet---
/usr/local/lib/python3.8/dist-packages/sklearn/linear_model/_coordinate_descent.py:1563: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
y = column_or_1d(y, warn=True)
adding new entry
subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval
0 Pilot02 0 linreg ... -9.864563 3.877603e-02 0.364940
1 Pilot02 0 linreg ... -11.875765 7.009716e-02 0.101171
2 Pilot02 0 linreg ... -11.069278 4.702307e-02 0.271822
3 Pilot02 0 linreg ... -25.345517 1.689162e-02 0.693177
4 Pilot02 0 linreg ... -15.299470 1.187485e-01 0.005380
.. ... ... ... ... ... ... ...
577 Pilot03 2 elastic ... -0.806993 -1.393941e-01 0.000012
578 Pilot02 3 elastic ... -2.285661 6.344185e-07 0.999982
579 Pilot03 2 elastic ... -0.123614 1.726530e-02 0.589689
580 Pilot02 3 elastic ... -1.856123 -3.904010e-02 0.168448
581 Pilot02 3 elastic ... -1.560151 -4.462040e-02 0.115431
[582 rows x 18 columns]
imu-bvp_rr_Pilot02_id3_combi5.0-10.0-15.0-17.0-20.0
train
(100, 5485)
test
(1246, 5484)
---ElasticNet---
/usr/local/lib/python3.8/dist-packages/sklearn/linear_model/_coordinate_descent.py:1563: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
y = column_or_1d(y, warn=True)
adding new entry
subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval
0 Pilot02 0 linreg ... -9.864563 3.877603e-02 0.364940
1 Pilot02 0 linreg ... -11.875765 7.009716e-02 0.101171
2 Pilot02 0 linreg ... -11.069278 4.702307e-02 0.271822
3 Pilot02 0 linreg ... -25.345517 1.689162e-02 0.693177
4 Pilot02 0 linreg ... -15.299470 1.187485e-01 0.005380
.. ... ... ... ... ... ... ...
578 Pilot02 3 elastic ... -2.285661 6.344185e-07 0.999982
579 Pilot03 2 elastic ... -0.123614 1.726530e-02 0.589689
580 Pilot02 3 elastic ... -1.856123 -3.904010e-02 0.168448
581 Pilot02 3 elastic ... -1.560151 -4.462040e-02 0.115431
582 Pilot02 3 elastic ... -1.242345 -4.401314e-02 0.120471
[583 rows x 18 columns]
imu-bvp_rr_Pilot02_id3_combi5.0-12.0-15.0-17.0-20.0
train
(100, 5485)
test
(1246, 5484)
---ElasticNet---
/usr/local/lib/python3.8/dist-packages/sklearn/linear_model/_coordinate_descent.py:1563: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
y = column_or_1d(y, warn=True)
/usr/local/lib/python3.8/dist-packages/scipy/stats/_stats_py.py:4424: ConstantInputWarning: An input array is constant; the correlation coefficient is not defined.
warnings.warn(stats.ConstantInputWarning(msg))
adding new entry
subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval
0 Pilot02 0 linreg ... -9.864563 0.038776 0.364940
1 Pilot02 0 linreg ... -11.875765 0.070097 0.101171
2 Pilot02 0 linreg ... -11.069278 0.047023 0.271822
3 Pilot02 0 linreg ... -25.345517 0.016892 0.693177
4 Pilot02 0 linreg ... -15.299470 0.118749 0.005380
.. ... ... ... ... ... ... ...
579 Pilot03 2 elastic ... -0.123614 0.017265 0.589689
580 Pilot02 3 elastic ... -1.856123 -0.039040 0.168448
581 Pilot02 3 elastic ... -1.560151 -0.044620 0.115431
582 Pilot02 3 elastic ... -1.242345 -0.044013 0.120471
583 Pilot02 3 elastic ... -1.023577 NaN NaN
[584 rows x 18 columns]
imu-bvp_rr_Pilot02_id3_combi7.0-10.0-12.0-15.0-17.0
train
(100, 5485)
test
(1246, 5484)
---ElasticNet---
/usr/local/lib/python3.8/dist-packages/sklearn/linear_model/_coordinate_descent.py:1563: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
y = column_or_1d(y, warn=True)
adding new entry
subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval
0 Pilot02 0 linreg ... -9.864563 0.038776 0.364940
1 Pilot02 0 linreg ... -11.875765 0.070097 0.101171
2 Pilot02 0 linreg ... -11.069278 0.047023 0.271822
3 Pilot02 0 linreg ... -25.345517 0.016892 0.693177
4 Pilot02 0 linreg ... -15.299470 0.118749 0.005380
.. ... ... ... ... ... ... ...
580 Pilot02 3 elastic ... -1.856123 -0.039040 0.168448
581 Pilot02 3 elastic ... -1.560151 -0.044620 0.115431
582 Pilot02 3 elastic ... -1.242345 -0.044013 0.120471
583 Pilot02 3 elastic ... -1.023577 NaN NaN
584 Pilot02 3 elastic ... -1.205065 -0.004848 0.864262
[585 rows x 18 columns]
imu-bvp_rr_Pilot02_id3_combi7.0-10.0-12.0-15.0-20.0
train
(100, 5485)
test
(1246, 5484)
---ElasticNet---
/usr/local/lib/python3.8/dist-packages/sklearn/linear_model/_coordinate_descent.py:1563: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
y = column_or_1d(y, warn=True)
adding new entry
subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval
0 Pilot02 0 linreg ... -9.864563 0.038776 0.364940
1 Pilot02 0 linreg ... -11.875765 0.070097 0.101171
2 Pilot02 0 linreg ... -11.069278 0.047023 0.271822
3 Pilot02 0 linreg ... -25.345517 0.016892 0.693177
4 Pilot02 0 linreg ... -15.299470 0.118749 0.005380
.. ... ... ... ... ... ... ...
581 Pilot02 3 elastic ... -1.560151 -0.044620 0.115431
582 Pilot02 3 elastic ... -1.242345 -0.044013 0.120471
583 Pilot02 3 elastic ... -1.023577 NaN NaN
584 Pilot02 3 elastic ... -1.205065 -0.004848 0.864262
585 Pilot02 3 elastic ... -0.963534 0.021076 0.457296
[586 rows x 18 columns]
imu-bvp_rr_Pilot02_id3_combi7.0-10.0-12.0-17.0-20.0
train
(100, 5485)
test
(1246, 5484)
---ElasticNet---
/usr/local/lib/python3.8/dist-packages/sklearn/linear_model/_coordinate_descent.py:1563: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
y = column_or_1d(y, warn=True)
adding new entry
subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval
0 Pilot02 0 linreg ... -9.864563 0.038776 0.364940
1 Pilot02 0 linreg ... -11.875765 0.070097 0.101171
2 Pilot02 0 linreg ... -11.069278 0.047023 0.271822
3 Pilot02 0 linreg ... -25.345517 0.016892 0.693177
4 Pilot02 0 linreg ... -15.299470 0.118749 0.005380
.. ... ... ... ... ... ... ...
582 Pilot02 3 elastic ... -1.242345 -0.044013 0.120471
583 Pilot02 3 elastic ... -1.023577 NaN NaN
584 Pilot02 3 elastic ... -1.205065 -0.004848 0.864262
585 Pilot02 3 elastic ... -0.963534 0.021076 0.457296
586 Pilot02 3 elastic ... -0.832011 0.014414 0.611245
[587 rows x 18 columns]
imu-bvp_rr_Pilot02_id3_combi7.0-10.0-15.0-17.0-20.0
train
(100, 5485)
test
(1246, 5484)
---ElasticNet---
/usr/local/lib/python3.8/dist-packages/sklearn/linear_model/_coordinate_descent.py:1563: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
y = column_or_1d(y, warn=True)
adding new entry
subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval
0 Pilot02 0 linreg ... -9.864563 0.038776 0.364940
1 Pilot02 0 linreg ... -11.875765 0.070097 0.101171
2 Pilot02 0 linreg ... -11.069278 0.047023 0.271822
3 Pilot02 0 linreg ... -25.345517 0.016892 0.693177
4 Pilot02 0 linreg ... -15.299470 0.118749 0.005380
.. ... ... ... ... ... ... ...
583 Pilot02 3 elastic ... -1.023577 NaN NaN
584 Pilot02 3 elastic ... -1.205065 -0.004848 0.864262
585 Pilot02 3 elastic ... -0.963534 0.021076 0.457296
586 Pilot02 3 elastic ... -0.832011 0.014414 0.611245
587 Pilot02 3 elastic ... -0.777954 0.006047 0.831128
[588 rows x 18 columns]
imu-bvp_rr_Pilot02_id3_combi7.0-12.0-15.0-17.0-20.0
train
(100, 5485)
test
(1246, 5484)
---ElasticNet---
/usr/local/lib/python3.8/dist-packages/sklearn/linear_model/_coordinate_descent.py:1563: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
y = column_or_1d(y, warn=True)
adding new entry
subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval
0 Pilot02 0 linreg ... -9.864563 0.038776 0.364940
1 Pilot02 0 linreg ... -11.875765 0.070097 0.101171
2 Pilot02 0 linreg ... -11.069278 0.047023 0.271822
3 Pilot02 0 linreg ... -25.345517 0.016892 0.693177
4 Pilot02 0 linreg ... -15.299470 0.118749 0.005380
.. ... ... ... ... ... ... ...
584 Pilot02 3 elastic ... -1.205065 -0.004848 0.864262
585 Pilot02 3 elastic ... -0.963534 0.021076 0.457296
586 Pilot02 3 elastic ... -0.832011 0.014414 0.611245
587 Pilot02 3 elastic ... -0.777954 0.006047 0.831128
588 Pilot02 3 elastic ... -4.740700 0.001226 0.965517
[589 rows x 18 columns]
imu-bvp_rr_Pilot02_id3_combi10.0-12.0-15.0-17.0-20.0
train
(100, 5485)
test
(1246, 5484)
---ElasticNet---
/usr/local/lib/python3.8/dist-packages/sklearn/linear_model/_coordinate_descent.py:1563: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
y = column_or_1d(y, warn=True)
adding new entry
subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval
0 Pilot02 0 linreg ... -9.864563 0.038776 0.364940
1 Pilot02 0 linreg ... -11.875765 0.070097 0.101171
2 Pilot02 0 linreg ... -11.069278 0.047023 0.271822
3 Pilot02 0 linreg ... -25.345517 0.016892 0.693177
4 Pilot02 0 linreg ... -15.299470 0.118749 0.005380
.. ... ... ... ... ... ... ...
585 Pilot02 3 elastic ... -0.963534 0.021076 0.457296
586 Pilot02 3 elastic ... -0.832011 0.014414 0.611245
587 Pilot02 3 elastic ... -0.777954 0.006047 0.831128
588 Pilot02 3 elastic ... -4.740700 0.001226 0.965517
589 Pilot02 3 elastic ... -0.478754 -0.043455 0.125258
[590 rows x 18 columns]
Namespace(data_input='imu-bvp', feature_method='tsfresh', lbl_str='pss', model='elastic', overwrite=0, subject=2, test_standing=1, train_len=5, win_shift=0.2, win_size=12)
......@@ -77,8 +77,8 @@ def run_fft(data, fs):
xf = fftfreq(N,T)[:N//2]
return xf, yf
def do_pad_fft(sig, fs=IMU_FS):
pad_len = npads_frequency_resolution(len(sig), fs=fs)
def do_pad_fft(sig, fs=IMU_FS, fr=0.02):
pad_len = npads_frequency_resolution(len(sig), fs=fs, fr=fr)
data_pad = np.pad(sig.squeeze(), (0, pad_len), 'constant', constant_values=0)
data_xf, data_yf = run_fft(data_pad, fs)
return data_xf, data_yf
......
......@@ -367,47 +367,29 @@ def sync_to_ref(df0, df1):
return dsync0.sync_df(df0), dsync1.sync_df(df1)
# Multiprocessing task for windowing dataframe
def imu_df_win_task(w_inds, df, i, cols):
time = df['sec'].values
if w_inds[-1] == 0: return
w_df = df.iloc[w_inds]
t0, t1 = time[w_inds][0], time[w_inds][-1]
diff = time[w_inds[1:]] - time[w_inds[0:-1]]
mask = np.abs(diff)>20
diff_chk = np.any(mask)
if diff_chk:
return
if cols is None:
cols = IMU_COLS
data = w_df[cols].values
# DSP
sd_data = (data - np.mean(data, axis=0))/np.std(data, axis=0)
# ys = cubic_interp(sd_data, BR_FS, FS_RESAMPLE)
filt_data = imu_signal_processing(sd_data, IMU_FS)
x_out = pd.DataFrame(filt_data,
columns=IMU_COLS)
sm_out = w_df['BR'].values
ps_out = w_df['PSS'].values
x_vec_time = np.median(time[w_inds])
fs = 1/np.mean(diff)
ps_freq = int(get_max_frequency(ps_out, fs=fs))
y_tmp = np.array([x_vec_time, np.nanmedian(sm_out), ps_freq])
x_out['sec'] = x_vec_time
x_out['id'] = i
y_out = pd.DataFrame([y_tmp], columns=['sec', 'br', 'pss'])
# Task for windowing dataframe
def df_win_task(w_inds, df, i, cols):
"""
Performs signal processing on IMU. If BVP values exist in the column
namespace, BVP signal processing is performed. Extract median BR from the
summary bioharness file and max frequency of the PSS wave.
Add index value for each window for tsfresh processing.
return x_out, y_out
Attributes
----------
w_inds : numpy.ndarray
specifies the window indexes for the df
df : pandas.DataFrame
DataFrame to extract window from
i : int
window index
cols : list
columns to perform data processing functions across
def df_win_task(w_inds, df, i, cols):
Returns
-------
pandas.DataFrame, pandas.DataFrame
"""
time = df['sec'].values
if w_inds[-1] == 0: return
w_df = df.iloc[w_inds]
......@@ -417,6 +399,8 @@ def df_win_task(w_inds, df, i, cols):
fs_est = 1/np.mean(diff)
if fs_est > 70 and 'acc_x' in cols: fs = IMU_FS
elif fs_est < 70 and 'bvp' in cols: fs = PPG_FS
# Reject window if there is a time difference between rows greater than 20s
mask = np.abs(diff)>20
diff_chk = np.any(mask)
if diff_chk:
......@@ -445,6 +429,7 @@ def df_win_task(w_inds, df, i, cols):
x_vec_time = np.median(time[w_inds])
fs = 1/np.mean(diff)
ps_out = pressure_signal_processing(ps_out, fs=fs)
ps_freq = int(get_max_frequency(ps_out, fs=fs))
y_tmp = np.array([x_vec_time, np.nanmedian(sm_out), ps_freq])
......@@ -458,18 +443,40 @@ def df_win_task(w_inds, df, i, cols):
if 'bvp' in cols:
xf, yf = do_pad_fft(bvp_filt, fs=fs)
bv_freq = int(xf[yf.argmax()]*60)
# y_out['bvp_est'] = bv_freq
# Uncomment if you wish to extract BVP estimated HR.
# y_out['hr_est'] = bv_freq
return x_out, y_out
def get_max_frequency(data, fs=IMU_FS):
data = pressure_signal_processing(data, fs=fs)
def get_max_frequency(data, fs=IMU_FS, fr=0.02):
"""
Returns the maximum frequency after padded fft
Attributes
----------
data : numpy.ndarray
signal to extract max frequency
fs : int
signal sampling frequency (default = IMU_FS)
fr : float
frequency resolution to set pad length (default = 0.02)
xf, yf = do_pad_fft(data, fs=fs)
Returns
-------
float
"""
xf, yf = do_pad_fft(data, fs=fs, fr=fr)
max_freq = xf[yf.argmax()]*60
return max_freq
def convert_to_float(df):
"""
Converts 'sec', 'pss', 'br', and 'subject' columns to float
Attributes
----------
df : pandas.DataFrame
"""
cols = df.columns.values
if 'sec' in cols:
df['sec'] = df['sec'].astype(float)
......@@ -481,6 +488,22 @@ def convert_to_float(df):
df['subject'] = df['subject'].astype(float)
def load_and_sync_xsens(subject, sens_list:list=['imu', 'bvp']):
"""
Loads requested sensors from the subject folder and synchronises each to
the beginning and end timestamps. Linearly interpolates the data and
timestamps to match the higher frequency data.
Arguments
---------
subject : str
subject to extract data from (i.e. 'Pilot02', 'S02')
sens_list : list
a list that contains either or both 'imu' and 'bvp'
Returns
-------
pd.DataFrame
"""
assert 'imu' in sens_list or 'bvp' in sens_list, \
f"{sens_list} is not supported, must contain"\
"'imu', 'bvp' or 'imu, bvp'"
......@@ -610,10 +633,6 @@ def load_tsfresh(xsens_df, home_dir,
"""
assert data_cols is not None, "invalid selection for data columns"
assert 'acc_x' in xsens_df.columns.tolist() and \
'gyro_x' in xsens_df.columns.tolist() and \
'bvp' in xsens_df.columns.tolist(), \
"Does not include the full required dataset. Must have both IMU and BVP"
# raise NotImplementedError("To be implemented")
......@@ -629,6 +648,12 @@ def load_tsfresh(xsens_df, home_dir,
if exists(pkl_file) and not overwrite:
return pd.read_pickle(pkl_file)
assert 'acc_x' in xsens_df.columns.tolist() and \
'gyro_x' in xsens_df.columns.tolist() and \
'bvp' in xsens_df.columns.tolist(), \
"First instance must include the full required dataset. Must have both "\
"IMU and BVP"
x_df, y_df = get_df_windows(xsens_df,
df_win_task,
window_size=window_size,
......@@ -847,6 +872,8 @@ def dsp_win_func(w_inds, df, i, cols):
x_vec_time = np.median(time[w_inds])
fs = 1/np.mean(diff)
ps_out = pressure_signal_processing(ps_out, fs=fs)
ps_freq = int(get_max_frequency(ps_out, fs=IMU_FS))
y_tmp = np.array([x_vec_time, np.nanmedian(sm_out), ps_freq])
......@@ -1226,8 +1253,8 @@ def sens_rr_model(subject,
x_test = make_windows_from_id(x_test_df, data_cols)
y_test = y_test_df[lbl_str].values.reshape(-1, 1)
# x_train = y_train_df['bvp_est'].values.reshape(-1, 1)
# x_test = y_test_df['bvp_est'].values.reshape(-1, 1)
# x_train = y_train_df['hr_est'].values.reshape(-1, 1)
# x_test = y_test_df['hr_est'].values.reshape(-1, 1)
print("minirocket transforming...")
x_train = np.swapaxes(x_train, 1, 2)
x_test = np.swapaxes(x_test, 1, 2)
......
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment