An error occurred while loading the file. Please try again.
-
Raymond Chia authoredc995cbc5
check_imu_timestamp.py 3.60 KiB
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import ipdb
import glob
from datetime import datetime, timedelta
import pytz
from multiprocessing import Pool
from os.path import join, splitext
from modules.datapipeline import datetime_to_ms
def get_flist(f_glob):
f_list = sorted(glob.glob(f_glob, recursive=True))
return f_list
def load_only_imu(f):
try:
df = pd.read_json(f, lines=True, compression='gzip')
except EOFError:
df = pd.read_json(splitext(f)[0], lines=True)
if df.empty: return
data_df = pd.DataFrame(df['data'].tolist())
df = pd.concat([df.drop('data', axis=1), data_df], axis=1)
mask = pd.isna(df['accelerometer'])
na_inds = df.loc[mask, :].index.values
not_na_inds = df.loc[~mask, :].index.values
df_na = df.drop(index=not_na_inds)
df_not_na = df.drop(index=na_inds)
return df_not_na
def get_mean_fs(df):
time = df['timestamp'].values
diff = time[1:] - time[:-1]
fs = 1/np.mean(diff)
print(max(diff))
print(min(diff))
plt.plot(diff)
plt.show()
return fs
def fname_fs(f):
imu_df = load_only_imu(f)
if imu_df is None: return
fs = get_mean_fs(imu_df)
return f, fs
def imu_start_end_time(hdr_fname, data_fname):
imu_hdr = pd.read_json(hdr_fname, orient='index')
imu_hdr = imu_hdr.to_dict().pop(0)
imu_df = load_only_imu(data_fname)
iso_tz = imu_hdr['created']
tzinfo = pytz.timezone(imu_hdr['timezone'])
# adjust for UTC
start_time = datetime.fromisoformat(iso_tz[:-1]) + timedelta(hours=11)
imu_times = imu_df['timestamp'].values
imu_datetimes = [start_time + timedelta(seconds=val) \
for val in imu_times]
nbins = len(imu_times)
est_end = datetime.fromtimestamp(imu_datetimes[0].timestamp() + nbins*(1/120))
print("endtime: {0}\testimate: {1}".format(imu_datetimes[-1],
est_end))
return imu_datetimes[0], imu_datetimes[-1]
def str_to_datetime(time_in):
fmt ="%d/%m/%Y %H:%M:%S.%f"
dstr = datetime.strptime(time_in, fmt)
return dstr
def harness_start_end_time(fname, fs=100):
df = pd.read_csv(fname)
t0 = str_to_datetime(df['Time'].iloc[0])
t1 = str_to_datetime(df['Time'].iloc[-1])
nbins = len(df)
est_end = datetime.fromtimestamp(t0.timestamp() + nbins*(1/fs))
print("endtime: {0}\testimate: {1}".format(t1,
est_end))
return t0, t1
if __name__ == '__main__':
data_dir = '/data/rqchia/aria_walk/Data/test-rest'
f_glob = join(data_dir, '**', 'imudata.gz')
h_glob = join(data_dir, '**', 'recording.g3')
data_fname = glob.glob(f_glob)[0]
hdr_fname = glob.glob(h_glob)[0]
t0, t1 = imu_start_end_time(hdr_fname, data_fname)
a_glob = join(data_dir, '**', '*_Accel.csv')
b_glob = join(data_dir, '**', '*_Breathing.csv')
s_glob = join(data_dir, '**', '*_SummaryEnhanced.csv')
a_fname = glob.glob(a_glob)[0]
a0, a1 = harness_start_end_time(a_fname, fs=100)
b_fname = glob.glob(b_glob)[0]
b0, b1 = harness_start_end_time(b_fname, fs=25)
s_fname = glob.glob(s_glob)[0]
s0, s1 = harness_start_end_time(s_fname, fs=1)
print(f"imu {t0}\t{t1}\n"
f"acc {a0}\t{a1}\n"
f"bre {b0}\t{b1}\n"
f"sum {s0}\t{s1}\n")
# flist = get_flist(f_glob)
# tmp = []
# tmp = fname_fs(flist[0])
# # with Pool(10) as p:
# # tmp = p.map(fname_fs, flist)
# df = pd.DataFrame(tmp, columns=['fname', 'fs'])
# df.dropna(inplace=True)
# mask = df['fs'] > 10
# df = df[mask]
# print(df)