Newer
Older
from os import makedirs, mkdir
from os.path import join, exists
import pandas as pd
import numpy as np
import json
import ipdb
import re
import pickle
import sys
import time
import argparse
from datetime import datetime, timedelta, timezone, timedelta
import pytz
import matplotlib.pyplot as plt
from functools import partial
from collections import Counter
from multiprocessing import Pool, cpu_count
import tensorflow as tf
from sklearn.preprocessing import StandardScaler, MinMaxScaler, OneHotEncoder
from sklearn.preprocessing import PolynomialFeatures, LabelEncoder
from sklearn.model_selection import KFold, train_test_split
from sklearn.metrics import accuracy_score
from tsfresh.feature_extraction import extract_features
from tsfresh.feature_extraction import settings as tsfresh_settings
from tsfresh.utilities.string_manipulation import get_config_from_string
from modules.datapipeline import get_file_list, load_and_snip, load_data, \
load_split_data, load_harness_data
from modules.digitalsignalprocessing import vectorized_slide_win as vsw
from modules.digitalsignalprocessing import imu_signal_processing
from modules.digitalsignalprocessing import bvp_signal_processing
from modules.digitalsignalprocessing import hernandez_sp, reject_artefact
pressure_signal_processing, infer_frequency, movingaverage
from modules.utils import *
from modules.evaluations import Evaluation
from modules.datapipeline import get_windowed_data, DataSynchronizer,\
parallelize_dataframe
from modules.datapipeline import ProjectFileHandler
from models.ardregression import ARDRegressionClass
from models.knn import KNNClass
from models.svm import SVMClass
from models.lda import LDAClass
from models.svr import SVRClass
from models.logisticregression import LogisticRegressionClass
from models.linearregression import LinearRegressionClass
from models.neuralnet import FNN_HyperModel, LSTM_HyperModel, TunerClass,\
CNN1D_HyperModel
from models.ridgeclass import RidgeClass
from models.resnet import Regressor_RESNET, Classifier_RESNET
from models.xgboostclass import XGBoostClass
from pprint import PrettyPrinter
from sktime.transformations.panel.rocket import (
MiniRocket,
MiniRocketMultivariate,
MiniRocketMultivariateVariable,
)
from config import WINDOW_SIZE, WINDOW_SHIFT, IMU_FS, DATA_DIR, BR_FS\
IMU_COLS = ['acc_x', 'acc_y', 'acc_z', 'gyro_x', 'gyro_y', 'gyro_z']
def utc_to_local(utc_dt, tz=None):
return utc_dt.replace(tzinfo=timezone.utc).astimezone(tz=tz)
def datetime_from_utc_to_local(utc_datetime):
now_timestamp = time.time()
offset = datetime.fromtimestamp(now_timestamp) - datetime.utcfromtimestamp(now_timestamp)
return utc_datetime + offset
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
# Load data
def load_bioharness_file(f:str, skiprows=0, skipfooter=0, **kwargs):
df_list = []
method = partial(pd.read_csv, skipinitialspace=True,
skiprows=list(range(1, skiprows+1)),
skipfooter=skipfooter,
header=0,
**kwargs
)
df = method(f)
if 'Time' not in df.columns.values:
df['Time'] = pd.to_datetime(
df.rename(columns={'Date':'Day'})[
['Day','Month','Year']]) \
+ pd.to_timedelta(df['ms'], unit='ms')
if pd.isna(df['Time']).any():
df['Time'].interpolate(inplace=True)
df['Time'] = pd.to_datetime(df['Time'], format="%d/%m/%Y %H:%M:%S.%f")
df['Time'] = df['Time'].dt.strftime("%d/%m/%Y %H:%M:%S.%f")
return df
def load_bioharness_files(f_list:list, skiprows=0, skipfooter=0, **kwargs):
df_list = []
method = partial(pd.read_csv, skipinitialspace=True,
skiprows=list(range(1, skiprows+1)),
skipfooter=skipfooter,
header=0, **kwargs)
for f in f_list:
df_list.append(load_bioharness_file(f))
df = pd.concat(df_list, ignore_index=True)
return df
def bioharness_datetime_to_seconds(val):
fmt = "%d/%m/%Y %H:%M:%S.%f"
dstr = datetime.strptime(val, fmt)
seconds = dstr.timestamp()
return seconds
def load_imu_file(imu_file:str):
hdr_file = imu_file.replace('imudata.gz', 'recording.g3')
df = pd.read_json(imu_file, lines=True, compression='gzip')
hdr = pd.read_json(hdr_file, orient='index')
hdr = hdr.to_dict().pop(0)
if df.empty: return df, hdr
data_df = pd.DataFrame(df['data'].tolist())
df = pd.concat([df.drop('data', axis=1), data_df], axis=1)
iso_tz = hdr['created']
tzinfo = pytz.timezone(hdr['timezone'])
# adjust for UTC
start_time = datetime.fromisoformat(iso_tz[:-1])
start_time = utc_to_local(start_time, tz=tzinfo).astimezone(tzinfo)
na_inds = df.loc[pd.isna(df['accelerometer']), :].index.values
df.drop(index=na_inds, inplace=True)
imu_times = df['timestamp'].values
df['timestamp_interp'] = imu_times
df['timestamp_interp'] = df['timestamp_interp'].interpolate()
imu_times = df['timestamp_interp'].values
imu_datetimes = [start_time + timedelta(seconds=val) \
for val in imu_times]
imu_s = np.array([time.timestamp() for time in imu_datetimes])
df['sec'] = imu_s
time_check_thold = df['sec'].min() + 3*3600
mask = df['sec'] > time_check_thold
if np.any(mask):
df = df[np.logical_not(mask)]
return df, hdr
def load_imu_files(f_list:list):
data, hdr = [], []
tmp = []
for f in f_list:
tmp.append(load_imu_file(f))
for l in tmp:
data.append(l[0])
hdr.append(l[1])
data_df = pd.concat(data, axis=0)
return data_df, hdr
def load_e4_file(e4_file:str):
''' First row is the initial time of the session as unix time.
Second row is the sample rate in Hz'''
zip_file = ZipFile(e4_file)
dfs = {csv_file.filename: pd.read_csv(zip_file.open(csv_file.filename)
,header=None)
for csv_file in zip_file.infolist()
if csv_file.filename.endswith('.csv')}
bvp = dfs["BVP.csv"]
t0 = bvp.iloc[0].values[0]
fs = bvp.iloc[1].values[0]
nsamples = len(bvp) - 2
t0_datetime = datetime.utcfromtimestamp(t0)
t0_local = datetime_from_utc_to_local(t0_datetime)
time = [t0_local.timestamp() + ind*(1/fs) for ind in
range(nsamples)]
tmp = [np.nan, np.nan]
time = tmp + time
head = bvp.iloc[[0, 1]]
bvp.drop(inplace=True, index=[0, 1])
hdr = {'start_time': head.iloc[0,0],
'fs': head.iloc[0,1]}
return bvp, hdr
def load_e4_files(f_list:list):
Loading full blame...