Newer
Older
from os import makedirs, mkdir
from os.path import join, exists
import pandas as pd
import numpy as np
import json
import ipdb
import re
import pickle
import sys
import time
import argparse
from datetime import datetime, timedelta, timezone, timedelta
import pytz
import matplotlib.pyplot as plt
from functools import partial
from collections import Counter
from multiprocessing import Pool, cpu_count
import tensorflow as tf
from sklearn.preprocessing import StandardScaler, MinMaxScaler, OneHotEncoder
from sklearn.preprocessing import PolynomialFeatures, LabelEncoder
from sklearn.model_selection import KFold, train_test_split
from sklearn.metrics import accuracy_score
from tsfresh.feature_extraction import extract_features
from tsfresh.feature_extraction import settings as tsfresh_settings
from tsfresh.utilities.string_manipulation import get_config_from_string
from modules.datapipeline import get_file_list, load_and_snip, load_data, \
load_split_data, load_harness_data
from modules.digitalsignalprocessing import vectorized_slide_win as vsw
from modules.digitalsignalprocessing import imu_signal_processing
from modules.digitalsignalprocessing import bvp_signal_processing
from modules.digitalsignalprocessing import hernandez_sp, reject_artefact
pressure_signal_processing, infer_frequency, movingaverage
from modules.utils import *
from modules.evaluations import Evaluation
from modules.datapipeline import get_windowed_data, DataSynchronizer,\
parallelize_dataframe
from modules.datapipeline import ProjectFileHandler
from models.ardregression import ARDRegressionClass
from models.knn import KNNClass
from models.svm import SVMClass
from models.lda import LDAClass
from models.svr import SVRClass
from models.logisticregression import LogisticRegressionClass
from models.linearregression import LinearRegressionClass
from models.neuralnet import FNN_HyperModel, LSTM_HyperModel, TunerClass,\
CNN1D_HyperModel
from models.ridgeclass import RidgeClass
from models.resnet import Regressor_RESNET, Classifier_RESNET
from models.xgboostclass import XGBoostClass
from pprint import PrettyPrinter
from sktime.transformations.panel.rocket import (
MiniRocket,
MiniRocketMultivariate,
MiniRocketMultivariateVariable,
)
from config import WINDOW_SIZE, WINDOW_SHIFT, IMU_FS, DATA_DIR, BR_FS\
IMU_COLS = ['acc_x', 'acc_y', 'acc_z', 'gyro_x', 'gyro_y', 'gyro_z']
"""Converts UTC datetime to specified timezone
Arguments
---------
utc_dt : datetime
input datetime to convert
tz : pytz.timezone
timezone
Returns
-------
datetime
"""
return utc_dt.replace(tzinfo=timezone.utc).astimezone(tz=tz)
"""Converts UTC datetime to local time
Arguments
---------
utc_dt : datetime
input datetime to convert
Returns
-------
datetime
"""
now_timestamp = time.time()
offset = datetime.fromtimestamp(now_timestamp) - datetime.utcfromtimestamp(now_timestamp)
return utc_datetime + offset
# Load data
def load_bioharness_file(f:str, skiprows=0, skipfooter=0, **kwargs):
"""
Load and retrieve bioharness file. Interpolates any empty time rows
Arguments
---------
f : str
filename
skiprows : int
num. of rows to skip from top
skipfooter : int
num. of rows to skip from bottom
**kwargs
Returns
-------
pandas.DataFrame
"""
fmt = "%d/%m/%Y %H:%M:%S.%f"
# Set keyword arguments for read_csv
method = partial(pd.read_csv, skipinitialspace=True,
skiprows=list(range(1, skiprows+1)),
skipfooter=skipfooter,
header=0,
**kwargs
)
df = method(f)
if 'Time' not in df.columns.values:
df['Time'] = pd.to_datetime(
df.rename(columns={'Date':'Day'})[
['Day','Month','Year']]) \
+ pd.to_timedelta(df['ms'], unit='ms')
if pd.isna(df['Time']).any():
df['Time'].interpolate(inplace=True)
df['Time'] = pd.to_datetime(df['Time'], format=fmt)
df['Time'] = df['Time'].dt.strftime(fmt)
return df
def load_bioharness_files(f_list:list, skiprows=0, skipfooter=0, **kwargs):
"""
Appends the output for load_bioharness_file
Arguments
---------
f_list : list
list of bioharness files to read
skiprows : int
num. of rows to skip from top
skipfooter : int
num. of rows to skip from bottom
**kwargs
Returns
-------
pandas.DataFrame
"""
df_list = []
for f in f_list:
df_list.append(load_bioharness_file(f))
df = pd.concat(df_list, ignore_index=True)
return df
def bioharness_datetime_to_seconds(val):
"""
Converts the bioharness datetime to seconds
Arguments
---------
val : str
bioharness time string
Returns
-------
float
"""
fmt = "%d/%m/%Y %H:%M:%S.%f"
dstr = datetime.strptime(val, fmt)
seconds = dstr.timestamp()
return seconds
def load_imu_file(imu_file:str):
Loading full blame...