Newer
Older
plt.plot(acc_y_dsp_df[lbl_str]); plt.plot(acc_dsp_df['pred'])
plt.subplot(212)
plt.plot(gyr_y_dsp_df[lbl_str]); plt.plot(gyr_dsp_df['pred'])
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
eval_handle = EvalHandler(y_test.flatten(), preds.flatten(), subject,
pfh, None, overwrite=overwrite)
eval_handle.update_eval_history()
eval_handle.save_eval_history()
pp = PrettyPrinter()
pp.pprint(eval_handle.load_eval_history())
fig, ax = plt.subplots()
fig_title = '_'.join([mdl_str, subject]+[combi_str])
ax.plot(y_test)
ax.plot(preds)
ax.set_title(fig_title)
ax.legend([lbl_str, 'pred'])
fig_dir = join(project_dir, 'figures')
if not exists(fig_dir): mkdir(fig_dir)
fig.savefig(join(fig_dir, fig_title+".png"))
plt.close()
def sens_rr_model(subject,
window_size=12,
window_shift=0.2,
lbl_str='pss',
mdl_str='knn',
overwrite=False,
feature_method='tsfresh',
train_len:int=3,
test_standing=False,
data_input:str='imu+bvp',
):
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
# TODO:
# implement tsfresh
"""Loads, preprocesses, and trains a select model using the configured
settings.
Attributes
----------
subject: str
specify the subject code (i.e. 'Pilot02', 'S02')
window_size : float
a numpy array of the respiration rate ground truth values from the
bioharness
window_shift : float
a portion of the window size between 0 and 1
mdl_str : str
a string to infoa portion of the window size between 0 and 1rm what model was used
overwrite : bool
overwrites the evaluations, models, and graphs (default False)
feature_method : str
choose between 'minirocket', 'tsfresh', or 'None'
train_len : int
number of minutes to sample from, choose between 1 to 7
test_standing : bool
boolean to use standing data
data_input : str
sensors to use, choose from 'imu', 'bvp', 'imu+bvp'
Returns
------
None
"""
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
cal_str = 'cpm'
tmp = []
imu_cols = IMU_COLS
bvp_cols = ['bvp']
if 'imu' in data_input and 'bvp' in data_input:
data_cols = ['acc_x', 'acc_y', 'acc_z',
'gyro_x', 'gyro_y', 'gyro_z',
'bvp']
parent_directory_string = "imu-bvp_rr"
data_input = 'imu+bvp'
sens_list = ['imu', 'bvp']
fs = IMU_FS
elif 'imu' in data_input and not 'bvp' in data_input:
data_cols = ['acc_x', 'acc_y', 'acc_z',
'gyro_x', 'gyro_y', 'gyro_z',]
parent_directory_string = "imu_rr"
sens_list = ['imu']
fs = IMU_FS
elif not 'imu' in data_input and 'bvp' in data_input:
data_cols = ['bvp']
parent_directory_string = "bvp_rr"
sens_list = ['bvp']
fs = PPG_FS
do_minirocket = False
use_tsfresh = False
overwrite_tsfresh = True
train_size = int(train_len)
if feature_method == 'tsfresh':
use_tsfresh = True
elif feature_method == 'minirocket':
do_minirocket = True
config = {'window_size' : window_size,
'window_shift' : window_shift,
'lbl_str' : lbl_str,
'do_minirocket' : do_minirocket,
'use_tsfresh' : use_tsfresh,
'train_len' : train_len,
'test_standing' : test_standing,
'sens_list' : data_input
}
pfh = ProjectFileHandler(config)
pfh.set_home_directory(join(DATA_DIR, 'subject_specific', subject))
pfh.set_parent_directory(parent_directory_string)
id_check = pfh.get_id_from_config()
if id_check is None:
pfh.set_project_directory()
pfh.save_metafile()
else:
pfh.set_id(int(id_check))
pfh.set_project_directory()
print('Using pre-set data id: ', pfh.fset_id)
project_dir = pfh.project_directory
xsens_df = load_and_sync_xsens(subject, sens_list=sens_list)
activity_df = get_activity_log(subject)
event_df = get_respiration_log(subject)
cal_df = get_cal_data(event_df, xsens_df)
if use_tsfresh:
xsens_df = load_tsfresh(xsens_df,
project_dir,
sens_list=sens_list,
window_size=window_size,
window_shift=window_shift,
fs=fs,
overwrite=overwrite_tsfresh,
data_cols=data_cols,
)
# include standing or not
test_df_tmp = get_test_data(cal_df, activity_df, xsens_df, test_standing)
test_df = pd.concat([df for df in test_df_tmp['data']], axis=0)
x_test_df, y_test_df = get_df_windows(
test_df, df_win_task, window_size=window_size,
window_shift=window_shift, fs=fs, cols=data_cols)
for combi in combinations(cal_df[cal_str].values, train_len):
combi_str = "-".join([str(x) for x in combi])
pfh.config[cal_str] = combi_str
marker = f'{parent_directory_string}_{subject}_id{pfh.fset_id}'\
f'_combi{combi_str}'
train_df_list = []
for cpm in combi:
df = cal_df[cal_df[cal_str] == cpm]
data_df = df['data'].iloc[0]
data_df['cpm'] = cpm
train_df_list.append(data_df)
train_df = pd.concat(train_df_list)
assert np.isin(train_df.index.values, test_df.index.values).any()==False,\
"overlapping test and train data"
print("train")
print(train_df.shape)
print("test")
print(test_df.shape)
if do_minirocket:
x_train_df, y_train_df = get_df_windows(train_df,
window_size=window_size,
window_shift=window_shift,
fs=fs,
x_train = make_windows_from_id(x_train_df, data_cols)
y_train = y_train_df['cpm'].values.reshape(-1, 1)
x_test = make_windows_from_id(x_test_df, data_cols)
# x_train = y_train_df['bvp_est'].values.reshape(-1, 1)
# x_test = y_test_df['bvp_est'].values.reshape(-1, 1)
print("minirocket transforming...")
x_train = np.swapaxes(x_train, 1, 2)
x_test = np.swapaxes(x_test, 1, 2)
minirocket = MiniRocketMultivariate()
x_train = minirocket.fit_transform(x_train)
x_test = minirocket.transform(x_test)
elif use_tsfresh:
x_train = train_df.iloc[:, 3:].values
x_test = test_df.iloc[:, 3:].values
y_test = test_df[lbl_str].values.reshape(-1, 1)
else:
x_train_df, y_train_df = get_df_windows(train_df,
df_win_task,
window_size=window_size,
window_shift=window_shift,
fs=fs,
cols=data_cols,
)
x_train = make_windows_from_id(x_train_df, data_cols)
x_test = make_windows_from_id(x_test_df, data_cols)
y_train = y_train_df['cpm'].values.reshape(-1, 1)
y_test = y_test_df[lbl_str].values.reshape(-1, 1)
transforms, model = model_training(mdl_str, x_train, y_train,
marker, validation_data=None,
overwrite=overwrite,
is_regression=True,
project_directory=project_dir,
window_size=int(window_size*fs),
extra_train=200,
)
if transforms is not None:
x_test = transforms.transform(x_test)
preds = model.predict(x_test)
eval_handle = EvalHandler(y_test.flatten(), preds.flatten(), subject,
pfh, mdl_str, overwrite=overwrite)
eval_handle.update_eval_history()
eval_handle.save_eval_history()
pp = PrettyPrinter()
pp.pprint(eval_handle.load_eval_history())
fig, ax = plt.subplots(2, 1, figsize=(7.3, 4.5))
fig_title = '_'.join([mdl_str, data_input, subject]+[combi_str])
fig.suptitle(fig_title)
ax[0].plot(y_test)
ax[0].plot(preds)
ax[0].set_title('raw')
if lbl_str == 'pss':
br = y_test_df['br'].values
ax[1].plot(movingaverage(y_test, 12), color='tab:blue')
ax[1].plot(br, 'k')
ax[1].plot(movingaverage(preds, 12), color='tab:orange')
ax[1].legend([lbl_str, 'br', 'pred'])
else:
ax[1].plot(y_test, 'k')
ax[1].plot(movingaverage(preds, 12), color='tab:orange')
ax[1].legend([lbl_str, 'pred'])
ax[1].set_title('smoothened')
fig_dir = join(project_dir, 'figures')
if not exists(fig_dir): mkdir(fig_dir)
fig.savefig(join(fig_dir, fig_title+".png"))
plt.close()
"""Returns arguments in a Namespace to configure the subject specific model
"""
parser = argparse.ArgumentParser()
parser.add_argument("-m", '--model', type=str,
default='linreg',
choices=['linreg', 'ard', 'xgboost', 'knn',
'svr', 'cnn1d', 'fnn', 'lstm', 'ridge',
'elastic'],
)
parser.add_argument("-s", '--subject', type=int,
)
parser.add_argument("-f", '--feature_method', type=str,
default='minirocket',
choices=['tsfresh', 'minirocket', 'None']
)
parser.add_argument("-o", '--overwrite', type=int,
default=0,
)
parser.add_argument('--win_size', type=int,
default=12,
)
parser.add_argument('--win_shift', type=float,
default=0.2,
)
parser.add_argument('-l', '--lbl_str', type=str,
)
parser.add_argument('-tl', '--train_len', type=int,
parser.add_argument('-d', '--data_input', type=str,
default='imu',
help='imu, bvp, imu+bvp: select data cols for input'
)
parser.add_argument('-ts', '--test_standing', type=int,
default=0,
help='1 or 0 input, choose if standing data will be '\
'recorded or not'
)
args = parser.parse_args()
return args
if __name__ == '__main__':
np.random.seed(100)
mdl_str = args.model
subject = args.subject
feature_method = args.feature_method
window_size = args.win_size
window_shift = args.win_shift
lbl_str = args.lbl_str
train_len = args.train_len
overwrite = args.overwrite
data_input = args.data_input
test_standing = args.test_standing
print(args)
assert train_len>0,"--train_len must be an integer greater than 0"
sens_rr_model(subject,
window_size=window_size,
window_shift=window_shift,
lbl_str=lbl_str,
mdl_str=mdl_str,
overwrite=overwrite,
feature_method=feature_method,
train_len=train_len,
test_standing=test_standing,
data_input=data_input,
)
subjects = [subject_pre_string+str(i).zfill(2) for i in \
range(1, n_subject_max+1) if i not in imu_issues]
rr_func = partial(sens_rr_model,
window_size=window_size,
window_shift=window_shift,
lbl_str=lbl_str,
mdl_str=mdl_str,
overwrite=overwrite,
feature_method=feature_method,
train_len=train_len,
test_standing=test_standing,
data_input=data_input,
)
if mdl_str in ['fnn', 'lstm', 'cnn1d', 'elastic', 'ard', 'xgboost']:
for subject in subjects:
else:
ncpu = min(len(subjects), cpu_count())
with Pool(ncpu) as p: