Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
2023-11-24 11:17:11.644555: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.
To enable the following instructions: AVX2 AVX512F FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.
Using TensorFlow backend
2023-11-24 11:19:11.472646: I tensorflow/compiler/xla/stream_executor/cuda/cuda_gpu_executor.cc:995] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355
2023-11-24 11:19:13.662952: I tensorflow/compiler/xla/stream_executor/cuda/cuda_gpu_executor.cc:995] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355
2023-11-24 11:19:13.663211: I tensorflow/compiler/xla/stream_executor/cuda/cuda_gpu_executor.cc:995] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355
2023-11-24 11:19:13.824090: I tensorflow/compiler/xla/stream_executor/cuda/cuda_gpu_executor.cc:995] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355
2023-11-24 11:19:13.824346: I tensorflow/compiler/xla/stream_executor/cuda/cuda_gpu_executor.cc:995] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355
2023-11-24 11:19:13.824490: I tensorflow/compiler/xla/stream_executor/cuda/cuda_gpu_executor.cc:995] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355
2023-11-24 11:19:24.414951: I tensorflow/compiler/xla/stream_executor/cuda/cuda_gpu_executor.cc:995] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355
2023-11-24 11:19:24.415222: I tensorflow/compiler/xla/stream_executor/cuda/cuda_gpu_executor.cc:995] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355
2023-11-24 11:19:24.415375: I tensorflow/compiler/xla/stream_executor/cuda/cuda_gpu_executor.cc:995] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355
2023-11-24 11:19:24.415492: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1639] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 14603 MB memory: -> device: 0, name: Quadro RTX 5000, pci bus id: 0000:0b:00.0, compute capability: 7.5
2023-11-24 11:19:44.069987: I tensorflow/compiler/xla/stream_executor/cuda/cuda_dnn.cc:432] Loaded cuDNN version 8600
Namespace(data_input='imu+bvp', feature_method='None', lbl_str='pss', model='cnn1d', overwrite=0, subject=3, test_standing=1, train_len=5, win_shift=0.2, win_size=12)
Using pre-set data id: 1
imu-bvp_rr_Pilot03_id1_combi5.0-7.0-10.0-12.0-15.0
train
(36036, 11)
test
(287283, 10)
---CNN1D---
input shape: (1440, 7)
x shape: (121, 1440, 7)
Reloading Tuner from /projects/CIBCIGroup/00DataUploading/rqchia/aria-respiration-cal/subject_specific/Pilot03/imu-bvp_rr/01/cnn1d_imu-bvp_rr_Pilot03_id1_combi5.0-7.0-10.0-12.0-15.0/bayesianoptimization/tuner0.json
{'n_layers': 5, 'filter_unit0': 128, 'filter_unit1': 128, 'filter_unit2': 256, 'filter_unit3': 128, 'filter_unit4': 128, 'kernel_size0': 5, 'kernel_size1': 5, 'kernel_size2': 4, 'kernel_size3': 2, 'kernel_size4': 4, 'pool_size0': 2, 'pool_size1': 1, 'pool_size2': 2, 'pool_size3': 4, 'pool_size4': 3, 'stride_size0': 2, 'stride_size1': 3, 'stride_size2': 3, 'stride_size3': 2, 'stride_size4': 2, 'dropout0': 0.1, 'dropout1': 0.30000000000000004, 'dropout2': 0.4, 'dropout3': 0.4, 'dropout4': 0.2}
1/31 [..............................] - ETA: 17:21
13/31 [===========>..................] - ETA: 0s
25/31 [=======================>......] - ETA: 0s
31/31 [==============================] - ETA: 0s
31/31 [==============================] - 35s 6ms/step
2023-11-24 11:20:05.196911: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x2b3542b0 initialized for platform CUDA (this does not guarantee that XLA will be used). Devices:
2023-11-24 11:20:05.196947: I tensorflow/compiler/xla/service/service.cc:176] StreamExecutor device (0): Quadro RTX 5000, Compute Capability 7.5
2023-11-24 11:20:05.246652: I tensorflow/compiler/mlir/tensorflow/utils/dump_mlir_util.cc:255] disabling MLIR crash reproducer, set env var `MLIR_CRASH_REPRODUCER_DIRECTORY` to enable.
2023-11-24 11:20:05.600808: I ./tensorflow/compiler/jit/device_compiler.h:186] Compiled cluster using XLA! This line is logged at most once for the lifetime of the process.
subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval
0 Pilot02 0 linreg ... -9.864563 0.038776 0.364940
1 Pilot02 0 linreg ... -11.875765 0.070097 0.101171
2 Pilot02 0 linreg ... -11.069278 0.047023 0.271822
3 Pilot02 0 linreg ... -25.345517 0.016892 0.693177
4 Pilot02 0 linreg ... -15.299470 0.118749 0.005380
.. ... ... ... ... ... ... ...
439 Pilot02 8 linreg ... -7.684031 0.108694 0.000098
440 Pilot02 8 linreg ... -6.294962 0.123153 0.000010
441 Pilot02 8 linreg ... -11.103152 0.121706 0.000013
442 Pilot02 8 linreg ... -1.049395 0.027840 0.319607
443 Pilot03 1 cnn1d ... -2.907395 -0.076130 0.017254
[444 rows x 18 columns]
imu-bvp_rr_Pilot03_id1_combi5.0-7.0-10.0-12.0-17.0
train
(35916, 11)
test
(287283, 10)
---CNN1D---
input shape: (1440, 7)
x shape: (115, 1440, 7)
Reloading Tuner from /projects/CIBCIGroup/00DataUploading/rqchia/aria-respiration-cal/subject_specific/Pilot03/imu-bvp_rr/01/cnn1d_imu-bvp_rr_Pilot03_id1_combi5.0-7.0-10.0-12.0-17.0/bayesianoptimization/tuner0.json
Search: Running Trial #18
Value |Best Value So Far |Hyperparameter
1 |1 |n_layers
128 |128 |filter_unit0
3 |4 |kernel_size0
3 |4 |pool_size0
1 |2 |stride_size0
0.4 |0.3 |dropout0
[2K
[2K
Trial 18 Complete [00h 00m 06s]
val_loss: 17.04376792907715
Best val_loss So Far: 15.390900611877441
Total elapsed time: 00h 00m 06s
Search: Running Trial #19
Value |Best Value So Far |Hyperparameter
2 |1 |n_layers
256 |128 |filter_unit0
256 |None |filter_unit1
2 |4 |kernel_size0
2 |None |kernel_size1
2 |4 |pool_size0
4 |None |pool_size1
4 |2 |stride_size0
5 |None |stride_size1
0.2 |0.3 |dropout0
0.1 |None |dropout1
[2K
[2K
Trial 19 Complete [00h 00m 03s]
val_loss: 15.77706241607666
Best val_loss So Far: 15.390900611877441
Total elapsed time: 00h 00m 10s
Search: Running Trial #20
Value |Best Value So Far |Hyperparameter
5 |1 |n_layers
256 |128 |filter_unit0
32 |None |filter_unit1
32 |None |filter_unit2
128 |None |filter_unit3
128 |None |filter_unit4
1 |4 |kernel_size0
5 |None |kernel_size1
5 |None |kernel_size2
2 |None |kernel_size3
3 |None |kernel_size4
1 |4 |pool_size0
3 |None |pool_size1
1 |None |pool_size2
4 |None |pool_size3
1 |None |pool_size4
1 |2 |stride_size0
3 |None |stride_size1
5 |None |stride_size2
1 |None |stride_size3
1 |None |stride_size4
0.3 |0.3 |dropout0
0.4 |None |dropout1
0.2 |None |dropout2
0 |None |dropout3
0.2 |None |dropout4
[2K
[2K
Trial 20 Complete [00h 00m 06s]
val_loss: 16.144161224365234
Best val_loss So Far: 15.390900611877441
Total elapsed time: 00h 00m 16s
{'n_layers': 1, 'filter_unit0': 128, 'kernel_size0': 4, 'pool_size0': 4, 'stride_size0': 2, 'dropout0': 0.30000000000000004}
Epoch 1/200
1/4 [======>.......................] - ETA: 3s - loss: 17.1562WARNING:tensorflow:Early stopping conditioned on metric `val_loss` which is not available. Available metrics are: loss
Early stopping conditioned on metric `val_loss` which is not available. Available metrics are: loss
4/4 [==============================] - 1s 14ms/step - loss: 18.0509 - lr: 1.0000e-04
Epoch 2/200
1/4 [======>.......................] - ETA: 0s - loss: 17.1967WARNING:tensorflow:Early stopping conditioned on metric `val_loss` which is not available. Available metrics are: loss
Early stopping conditioned on metric `val_loss` which is not available. Available metrics are: loss
4/4 [==============================] - 0s 6ms/step - loss: 17.0756 - lr: 1.0000e-04
Epoch 3/200
1/4 [======>.......................] - ETA: 0s - loss: 17.3031WARNING:tensorflow:Early stopping conditioned on metric `val_loss` which is not available. Available metrics are: loss
Early stopping conditioned on metric `val_loss` which is not available. Available metrics are: loss
4/4 [==============================] - 0s 6ms/step - loss: 16.2296 - lr: 1.0000e-04
Epoch 4/200
1/4 [======>.......................] - ETA: 0s - loss: 15.6096WARNING:tensorflow:Early stopping conditioned on metric `val_loss` which is not available. Available metrics are: loss
Early stopping conditioned on metric `val_loss` which is not available. Available metrics are: loss
4/4 [==============================] - 0s 6ms/step - loss: 15.3498 - lr: 1.0000e-04
Epoch 5/200
1/4 [======>.......................] - ETA: 0s - loss: 15.0370WARNING:tensorflow:Early stopping conditioned on metric `val_loss` which is not available. Available metrics are: loss
Early stopping conditioned on metric `val_loss` which is not available. Available metrics are: loss
4/4 [==============================] - 0s 6ms/step - loss: 14.4843 - lr: 1.0000e-04
Epoch 6/200
1/4 [======>.......................] - ETA: 0s - loss: 13.4561WARNING:tensorflow:Early stopping conditioned on metric `val_loss` which is not available. Available metrics are: loss
Early stopping conditioned on metric `val_loss` which is not available. Available metrics are: loss
4/4 [==============================] - 0s 6ms/step - loss: 13.5671 - lr: 1.0000e-04
Epoch 7/200
1/4 [======>.......................] - ETA: 0s - loss: 12.8690WARNING:tensorflow:Early stopping conditioned on metric `val_loss` which is not available. Available metrics are: loss
Early stopping conditioned on metric `val_loss` which is not available. Available metrics are: loss
4/4 [==============================] - 0s 6ms/step - loss: 12.7249 - lr: 1.0000e-04
Epoch 8/200
1/4 [======>.......................] - ETA: 0s - loss: 11.7780WARNING:tensorflow:Early stopping conditioned on metric `val_loss` which is not available. Available metrics are: loss
Early stopping conditioned on metric `val_loss` which is not available. Available metrics are: loss
4/4 [==============================] - 0s 6ms/step - loss: 11.8129 - lr: 1.0000e-04
Epoch 9/200
1/4 [======>.......................] - ETA: 0s - loss: 11.7223WARNING:tensorflow:Early stopping conditioned on metric `val_loss` which is not available. Available metrics are: loss
Early stopping conditioned on metric `val_loss` which is not available. Available metrics are: loss
4/4 [==============================] - 0s 6ms/step - loss: 10.8512 - lr: 1.0000e-04
Epoch 10/200
1/4 [======>.......................] - ETA: 0s - loss: 9.2289WARNING:tensorflow:Early stopping conditioned on metric `val_loss` which is not available. Available metrics are: loss
Early stopping conditioned on metric `val_loss` which is not available. Available metrics are: loss
4/4 [==============================] - 0s 6ms/step - loss: 9.9909 - lr: 1.0000e-04
Epoch 11/200
1/4 [======>.......................] - ETA: 0s - loss: 10.6985WARNING:tensorflow:Early stopping conditioned on metric `val_loss` which is not available. Available metrics are: loss
Early stopping conditioned on metric `val_loss` which is not available. Available metrics are: loss
4/4 [==============================] - 0s 6ms/step - loss: 9.1386 - lr: 1.0000e-04
Epoch 12/200
1/4 [======>.......................] - ETA: 0s - loss: 9.5148WARNING:tensorflow:Early stopping conditioned on metric `val_loss` which is not available. Available metrics are: loss
Early stopping conditioned on metric `val_loss` which is not available. Available metrics are: loss
4/4 [==============================] - 0s 6ms/step - loss: 8.1451 - lr: 1.0000e-04
Epoch 13/200
1/4 [======>.......................] - ETA: 0s - loss: 7.4322WARNING:tensorflow:Early stopping conditioned on metric `val_loss` which is not available. Available metrics are: loss
Early stopping conditioned on metric `val_loss` which is not available. Available metrics are: loss
4/4 [==============================] - 0s 6ms/step - loss: 7.3832 - lr: 1.0000e-04
Epoch 14/200
1/4 [======>.......................] - ETA: 0s - loss: 6.7001WARNING:tensorflow:Early stopping conditioned on metric `val_loss` which is not available. Available metrics are: loss
Early stopping conditioned on metric `val_loss` which is not available. Available metrics are: loss
4/4 [==============================] - 0s 6ms/step - loss: 6.5080 - lr: 1.0000e-04
Epoch 15/200
1/4 [======>.......................] - ETA: 0s - loss: 5.6133WARNING:tensorflow:Early stopping conditioned on metric `val_loss` which is not available. Available metrics are: loss
Early stopping conditioned on metric `val_loss` which is not available. Available metrics are: loss
4/4 [==============================] - 0s 6ms/step - loss: 5.8231 - lr: 1.0000e-04
Epoch 16/200
1/4 [======>.......................] - ETA: 0s - loss: 4.6576WARNING:tensorflow:Early stopping conditioned on metric `val_loss` which is not available. Available metrics are: loss
Early stopping conditioned on metric `val_loss` which is not available. Available metrics are: loss
4/4 [==============================] - 0s 6ms/step - loss: 5.1162 - lr: 1.0000e-04
Epoch 17/200
1/4 [======>.......................] - ETA: 0s - loss: 5.0202WARNING:tensorflow:Early stopping conditioned on metric `val_loss` which is not available. Available metrics are: loss
Early stopping conditioned on metric `val_loss` which is not available. Available metrics are: loss
4/4 [==============================] - 0s 6ms/step - loss: 4.6797 - lr: 1.0000e-04
Epoch 18/200
1/4 [======>.......................] - ETA: 0s - loss: 4.5692WARNING:tensorflow:Early stopping conditioned on metric `val_loss` which is not available. Available metrics are: loss
Early stopping conditioned on metric `val_loss` which is not available. Available metrics are: loss
4/4 [==============================] - 0s 6ms/step - loss: 4.1808 - lr: 1.0000e-04
Loading full blame...