Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
import ipdb
import numpy as np
import matplotlib.pyplot as plt
import matplotlib as mpl
import seaborn as sns
from joblib import dump, load
import time
from tqdm import tqdm
from sys import platform
import glob
import re
import pandas as pd
import json
from tsfresh import extract_features
from tsfresh.feature_selection import relevance as tsfresh_relevance
from tsfresh.feature_extraction import settings as tsfresh_settings
from sklearn.decomposition import PCA, FastICA
from sklearn.preprocessing import StandardScaler
from datetime import datetime, timedelta
from os import makedirs, listdir
from os.path import isdir, getsize
from os.path import join as path_join
from os.path import exists as path_exists
from pprint import PrettyPrinter
from multiprocessing import Pool, cpu_count
from functools import partial
from ast import literal_eval
from modules.animationplotter import AnimationPlotter, AnimationPlotter2D
from modules.digitalsignalprocessing import *
from modules.datapipeline import SubjectData, datetime_to_ms\
,ms_to_datetime, DataSynchronizer
from modules.datapipeline import get_file_list, load_files_conditions
from modules.datapipeline import get_windowed_data
from modules.evaluations import Evaluation
from config import DEBUG, NROWS, MARKER_FS, BR_FS, N_MARKERS , WINDOW_SIZE \
,WINDOW_SHIFT, ACC_THOLD, FS_RESAMPLE, MIN_RESP_RATE, MAX_RESP_RATE \
,TRAIN_VAL_TEST_SPLIT, IMU_FS, ACC_FS, DPI, FIG_FMT, DATA_DIR
''' We're looking only at meditation and rest '''
WINDOW_SIZE = 15 # seconds
WINDOW_SHIFT = 1 # seconds
# mpl.rc('font', serif='Times New Roman')
sns.set_theme(style='ticks')
# sns.axes_style('white')
def marker_main(subject='S13', condition='R', sens='imu_gyr', method='roddiger'):
window_size = WINDOW_SIZE
window_shift = WINDOW_SHIFT
fs = MARKER_FS
marker_sel = 0
if sens == 'marker':
fs = MARKER_FS
title = 'Marker Raw'
elif 'imu' in sens:
fs = IMU_FS
if 'acc' in sens: title = 'Head Worn Accelerometer Raw'
if 'gyr' in sens: title = 'Head Worn Gyroscope Raw'
elif sens=='h_acc':
if int(subject[-2:]) < 27: fs=BR_FS
else: fs=ACC_FS
title = 'Harness Accelerometer Raw'
# set glob based on sensor type and subject and condition
if 'imu' in sens: data_glob = f"*{condition}_imu_df"
elif sens == 'h_acc': data_glob = f"*{condition}_accel_df"
else: data_glob = f"*{condition}_{sens}_df"
marker_glob = f"*{condition}_marker_df"
data_list = get_file_list(data_glob, sbj=subject)
lbl_list = get_file_list(f'*{condition}_summary_df', sbj=subject)
pss_list = get_file_list(f'*{condition}_pressure_df', sbj=subject)
marker_flist = get_file_list(marker_glob, sbj=subject)
# load the files in the glob
marker_df = load_files_conditions(marker_flist, skip_ratio=0.0)
data_df = load_files_conditions(data_list, skip_ratio=0.0)
lbl_df = load_files_conditions(lbl_list, skip_ratio=0.0)
pss_df = load_files_conditions(pss_list, skip_ratio=0.0)
# bin to windows
x_time = data_df['ms'].values
marker_time = marker_df['ms'].values
vsw = vectorized_slide_win
data_inds = np.arange(0, len(x_time))
wins = vsw(data_inds, len(data_inds),
sub_window_size=window_size*fs,
stride_size=window_shift*fs)
is_marker = False
# if sens == 'marker':
# is_marker = True
if sens == 'imu_acc':
data = np.array(data_df['accelerometer'].map(literal_eval).tolist())
elif sens == 'imu_gyr':
data = np.array(data_df['gyroscope'].map(literal_eval).tolist())
elif sens == 'h_acc':
sbj_data = SubjectData(condition=condition, subject=subject)
sbj_data.accel_df = data_df
data = sbj_data.get_accel_data()
data_wins = get_windowed_data(x_time, data, wins)
data_list = [win for win in data_wins]
br_col = [col for col in pss_df.columns.values if\
'breathing' in col.lower()][0]
pss_dsp = pressure_signal_processing
pss_data = pss_df[br_col].values
pss_data = pss_dsp(pss_data)
pss_data = np.interp(x_time, pss_df['ms'].values, pss_data)
pss_data_wins = get_windowed_data(x_time, pss_data, wins)
pss_list = [win for win in pss_data_wins]
# Sync marker data
sbj_data = SubjectData(condition=condition, subject=subject)
sbj_data.marker_df = marker_df
marker_data = sbj_data.get_marker_data()
marker_data = marker_data[:, marker_sel, :]
tmp = []
for i in range(3):
tmp.append(np.interp(x_time, marker_df['ms'].values,
marker_data[:,i]))
marker_data = np.array(tmp).T
marker_data = second_order_diff(marker_data, MARKER_FS)
marker_wins = get_windowed_data(x_time, marker_data, wins)
marker_list = [win for win in marker_wins]
# Perform rejection
std_scaler = StandardScaler()
rejects = [i for i, win in enumerate(data_list) if
reject_artefact((win-np.mean(win,axis=0))/np.std(win,axis=0))]
inds_to_keep = np.delete(np.arange(0, len(data_list)), rejects)
marker_list = [marker_list[i] for i in inds_to_keep]
data_list = [data_list[i] for i in inds_to_keep]
pss_list = [pss_list[i] for i in inds_to_keep]
# plot the raw signal of a select window
fig, axs = plt.subplots(3,2, figsize=(12, 6.5), dpi=DPI)
mpl.rcParams['axes.titleweight'] = 'bold'
axs = axs.flatten()
win_ind = 22
if len(data_list) < win_ind:
data_win = data_list[int(len(data_list)//2)]
marker_win = marker_list[int(len(data_list)//2)]
else:
data_win = data_list[win_ind]
marker_win = marker_list[win_ind]
fontsize = 10
piter = 0.03
x_win = np.linspace(0, window_size, len(data_win))
axs[0].plot(x_win, StandardScaler().fit_transform(data_win), linewidth=1)
axs[0].set_title(title, fontsize=fontsize)
axs[0].set_xticklabels([])
# axs[0].set_xlabel('Time (s)')
if sens == 'marker' or 'acc' in sens:
axs[0].set_ylabel('Acceleration (m/s${^2}$)', fontsize=fontsize)
else:
axs[0].set_ylabel('Angular Velocity (deg/s)', fontsize=fontsize)
axs[0].legend(['X','Y', 'Z'], ncol=3, loc='lower left', fontsize=fontsize)
x_win = np.linspace(0, window_size, len(marker_win))
axs[1].plot(x_win, StandardScaler().fit_transform(marker_win), linewidth=1)
axs[1].set_title(f'Marker {marker_sel+1} Acceleration Raw', fontsize=fontsize)
axs[1].set_xticklabels([])
# axs[1].set_xlabel('Time (s)')
axs[1].set_ylabel('Acceleration (m/s${^2}$)', fontsize=fontsize)
axs[1].legend(['X','Y', 'Z'], ncol=3, loc='lower left', fontsize=fontsize)
# plot the processed signal with the pressure signal
if method == 'roddiger': sig_dsp = roddiger_sp
elif method == 'hernandez': sig_dsp = hernandez_sp
interp, smth = sig_dsp(data=data_win, fs=fs, is_marker=False)
marker_interp, marker_smth = sig_dsp(data=marker_win, fs=MARKER_FS,
is_marker=False)
pca = PCA(n_components=1, random_state=3)
pca_out = StandardScaler().fit_transform(pca.fit_transform(smth))
marker_out = StandardScaler().fit_transform(pca.fit_transform(marker_smth))
pss_out = StandardScaler().fit_transform(pss_list[win_ind].reshape(-1, 1))\
.squeeze()
x_smth = np.linspace(0, window_size, len(pca_out))
x_pss = np.linspace(0, window_size, len(pss_list[win_ind]))
axs[2].plot(x_pss, pss_out)
axs[2].plot(x_smth, pca_out, color='tab:red')
axs[2].set_ylabel("Normalised Units", fontsize=fontsize)
axs[2].set_xticks(np.arange(0, WINDOW_SIZE, 2))
axs[2].set_yticks(np.arange(-4, 4+2, 2))
axs[2].set_xlabel('Time (s)', fontsize=fontsize)
if 'acc' in sens:
axs[2].set_title('Accelerometer Signal vs Pressure', fontsize=fontsize)
axs[2].legend(['PSS', 'ACC'], ncol=3, loc='lower left',
fontsize=fontsize)
else:
axs[2].set_title('Gyroscope Signal vs Pressure', fontsize=fontsize)
axs[2].legend(['PSS', 'GYR'], ncol=3, loc='lower left',
fontsize=fontsize)
x_marker = np.linspace(0, window_size, len(marker_out))
axs[3].plot(x_pss, pss_out)
axs[3].plot(x_marker, marker_out, color='tab:green')
axs[3].set_xticks(np.arange(0, WINDOW_SIZE, 2))
axs[3].set_yticks(np.arange(-4, 4+2, 2))
axs[3].set_xlabel('Time (s)', fontsize=fontsize)
axs[3].set_title(f'Marker {marker_sel+1} Signal vs Pressure', fontsize=fontsize)
axs[3].legend(['PSS', 'MKR'], ncol=3, loc='lower left', fontsize=fontsize)
for a in axs[:4]:
a.tick_params(labelsize=fontsize)
box = a.get_position()
box.y0 += piter
box.y1 += piter
a.set_position(box)
# plot the FFT w/o padding
pad_len = npads_frequency_resolution(len(pca_out), fs=FS_RESAMPLE)
data_pad = np.pad(pca_out.squeeze(), (0, pad_len), 'constant',
constant_values=0)
data_xf, data_yf = run_fft(data_pad, FS_RESAMPLE)
data_ind = data_yf.argmax(axis=0)
pad_len = npads_frequency_resolution(len(pss_out), fs=fs)
pss_pad = np.pad(pss_out, (0, pad_len), 'constant', constant_values=0)
pss_xf, pss_yf = run_fft(pss_pad, fs)
pss_ind = pss_yf.argmax(axis=0)
pad_len = npads_frequency_resolution(len(marker_out), fs=FS_RESAMPLE)
marker_pad = np.pad(marker_out.squeeze(), (0, pad_len), 'constant',
constant_values=0)
marker_xf, marker_yf = run_fft(marker_pad, FS_RESAMPLE)
marker_ind = marker_yf.argmax(axis=0)
fig.delaxes(axs[-1])
fig.delaxes(axs[-2])
axs = np.delete(axs, [-2,-1])
axs = np.insert(axs, len(axs), fig.add_subplot(3, 3, 7))
axs = np.insert(axs, len(axs), fig.add_subplot(3, 3, 8))
axs = np.insert(axs, len(axs), fig.add_subplot(3, 3, 9))
ymax = 0.5
axs[-3].plot(data_xf, data_yf, color='tab:red')
axs[-3].plot(data_xf[data_ind], data_yf[data_ind], 'rx')
axs[-3].set_xticks(np.arange(0, 1, 0.2))
axs[-3].set_title('GYR Spectrum', fontsize=fontsize)
axs[-3].set_xlim([0, 1])
axs[-3].set_ylim([0, ymax])
axs[-3].set_xlabel('Frequency (Hz)', fontsize=fontsize)
axs[-3].set_ylabel('$|Y(f)|$', fontsize=fontsize)
axs[-2].plot(pss_xf, pss_yf)
axs[-2].plot(pss_xf[pss_ind], pss_yf[pss_ind], 'rx')
axs[-2].set_xticks(np.arange(0, 1, 0.2))
axs[-2].set_title('PSS Spectrum', fontsize=fontsize)
axs[-2].set_xlim([0, 1])
axs[-2].set_ylim([0, ymax])
axs[-2].set_xlabel('Frequency (Hz)', fontsize=fontsize)
axs[-1].plot(marker_xf, marker_yf, color='tab:green')
axs[-1].plot(marker_xf[marker_ind], marker_yf[marker_ind], 'rx')
axs[-1].set_xticks(np.arange(0, 1, 0.2))
axs[-1].set_title(f'MKR{marker_sel+1} Spectrum', fontsize=fontsize)
axs[-1].set_xlabel('Frequency (Hz)', fontsize=fontsize)
axs[-1].set_xlim([0, 1])
axs[-1].set_ylim([0, ymax])
tmp = axs[-3:]
for a in tmp:
box = a.get_position()
box.y0 -= piter
box.y1 -= piter
a.set_position(box)
fmt = FIG_FMT
fig.savefig(f"./graphs/methods/{method}_methods.{fmt}")
def main(subject='S14', condition='R', sens='imu_gyr', method='roddiger'):
window_size = WINDOW_SIZE
window_shift = WINDOW_SHIFT
fs = MARKER_FS
marker_sel = 6
if sens == 'marker':
fs = MARKER_FS
title = f'Marker {marker_sel+1} Raw'
elif 'imu' in sens:
fs = IMU_FS
if 'acc' in sens: title = 'Head Worn Accelerometer Raw'
if 'gyr' in sens: title = 'Head Worn Gyroscope Raw'
elif sens=='h_acc':
if int(subject[-2:]) < 27: fs=BR_FS
else: fs=ACC_FS
title = 'Harness Accelerometer Raw'
# set glob based on sensor type and subject and condition
if 'imu' in sens: data_glob = f"*{condition}_imu_df"
elif sens == 'h_acc': data_glob = f"*{condition}_accel_df"
else: data_glob = f"*{condition}_{sens}_df"
data_list = get_file_list(data_glob, sbj=subject)
lbl_list = get_file_list(f'*{condition}_summary_df', sbj=subject)
pss_list = get_file_list(f'*{condition}_pressure_df', sbj=subject)
# load the files in the glob
data_df = load_files_conditions(data_list, skip_ratio=0.0)
lbl_df = load_files_conditions(lbl_list, skip_ratio=0.0)
pss_df = load_files_conditions(pss_list, skip_ratio=0.0)
# bin to windows
x_time = data_df['ms'].values
vsw = vectorized_slide_win
data_inds = np.arange(0, len(x_time))
wins = vsw(data_inds, len(data_inds),
sub_window_size=window_size*fs,
stride_size=window_shift*fs)
is_marker = False
if sens == 'marker':
sbj_data = SubjectData(condition=condition, subject=subject)
sbj_data.marker_df = data_df
data = sbj_data.get_marker_data()
data = second_order_diff(data, fs)
is_marker = True
elif sens == 'imu_acc':
data = np.array(data_df['accelerometer'].map(literal_eval).tolist())
elif sens == 'imu_gyr':
data = np.array(data_df['gyroscope'].map(literal_eval).tolist())
elif sens == 'h_acc':
sbj_data = SubjectData(condition=condition, subject=subject)
sbj_data.accel_df = data_df
data = sbj_data.get_accel_data()
data_wins = get_windowed_data(x_time, data, wins)
data_list = [win for win in data_wins]
br_col = [col for col in pss_df.columns.values if\
'breathing' in col.lower()][0]
pss_dsp = pressure_signal_processing
pss_data = pss_df[br_col].values
pss_data = pss_dsp(pss_data)
pss_data = np.interp(x_time, pss_df['ms'].values, pss_data)
pss_data_wins = get_windowed_data(x_time, pss_data, wins)
pss_list = [win for win in pss_data_wins]
# Perform rejection
std_scaler = StandardScaler()
rejects = [i for i, win in enumerate(data_list) if
reject_artefact((win-np.mean(win,axis=0))/np.std(win,axis=0))]
inds_to_keep = np.delete(np.arange(0, len(data_list)), rejects)
data_list = [data_list[i] for i in inds_to_keep]
pss_list = [pss_list[i] for i in inds_to_keep]
# plot the raw signal of a select window
fig, axs = plt.subplots(3,1)
win_ind = 60
if len(data_list) < win_ind:
data_win = data_list[int(len(data_list)//2)]
else:
data_win = data_list[win_ind]
if is_marker:
data_win = data_win[:, marker_sel, :]
x_win = np.linspace(0, window_size, len(data_win))
axs[0].plot(x_win, StandardScaler().fit_transform(data_win), linewidth=1)
axs[0].set_title(title)
axs[0].set_xticklabels([])
axs[0].set_xlabel('Time (s)')
if sens == 'marker' or 'acc' in sens:
axs[0].set_ylabel('Acceleration (m/s${^2}$)')
else:
axs[0].set_ylabel('Angular Velocity (deg/s)')
axs[0].legend(['X','Y', 'Z'], ncol=3, loc='lower left')
# plot the processed signal with the pressure signal
if method == 'roddiger': sig_dsp = roddiger_sp
elif method == 'hernandez': sig_dsp = hernandez_sp
interp, smth = sig_dsp(data=data_win, fs=fs, is_marker=False)
pca = PCA(n_components=1, random_state=3)
pca_out = StandardScaler().fit_transform(pca.fit_transform(smth))
pss_out = StandardScaler().fit_transform(pss_list[win_ind].reshape(-1, 1))\
.squeeze()
x_smth = np.linspace(0, window_size, len(pca_out))
x_pss = np.linspace(0, window_size, len(pss_list[win_ind]))
axs[1].plot(x_pss, pss_out)
axs[1].plot(x_smth, pca_out, color='tab:red')
axs[1].set_ylabel("Normalised Units")
axs[1].set_xticks(np.arange(0, WINDOW_SIZE, 2))
axs[1].set_xlabel('Time (s)')
axs[1].set_title('Sensor Signal vs Pressure')
if sens == 'marker' or 'acc' in sens:
axs[1].legend(['PSS', 'ACC'], ncol=3, loc='lower left')
else:
axs[1].legend(['PSS', 'GYR'], ncol=3, loc='lower left')
# plot the FFT w/o padding
pad_len = npads_frequency_resolution(len(pca_out), fs=FS_RESAMPLE)
data_pad = np.pad(pca_out.squeeze(), (0, pad_len), 'constant', constant_values=0)
data_xf, data_yf = run_fft(data_pad, FS_RESAMPLE)
data_ind = data_yf.argmax(axis=0)
pad_len = npads_frequency_resolution(len(pss_out), fs=fs)
pss_pad = np.pad(pss_out, (0, pad_len), 'constant', constant_values=0)
pss_xf, pss_yf = run_fft(pss_pad, fs)
pss_ind = pss_yf.argmax(axis=0)
fig.delaxes(axs[-1])
axs = np.insert(axs, -1, fig.add_subplot(3, 2, 5))
axs = np.insert(axs, -1, fig.add_subplot(3, 2, 6))
axs[2].plot(data_xf, data_yf)
axs[2].plot(data_xf[data_ind], data_yf[data_ind], 'rx')
axs[2].set_xticks(np.arange(0, 1, 0.2))
axs[2].set_xlim([0, 1])
axs[2].set_ylim([0, 0.4])
axs[2].set_xlabel('Frequency (Hz)')
axs[2].set_ylabel('$|Y(f)|$')
axs[3].plot(pss_xf, pss_yf)
axs[3].plot(pss_xf[pss_ind], pss_yf[pss_ind], 'rx')
axs[3].set_xticks(np.arange(0, 1, 0.2))
axs[3].set_xlim([0, 1])
axs[3].set_ylim([0, 0.4])
axs[3].set_xlabel('Frequency (Hz)')
axs[3].set_ylabel('$|Y(f)|$')
fig.set_size_inches((5.5, 5))
plt.tight_layout()
plt.show()
if __name__ == '__main__':
# Make sure to run sync_data before any of these operations
marker_main(method='hernandez')
marker_main(method='roddiger')
plt.show()