Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
import glob
from os import makedirs, mkdir
from os.path import join, exists
import pandas as pd
import numpy as np
import json
import ipdb
import re
import pickle
import sys
import time
from zipfile import ZipFile
import argparse
from datetime import datetime, timedelta, timezone, timedelta
import pytz
import matplotlib.pyplot as plt
from functools import partial
from collections import Counter
from itertools import repeat, chain, combinations
from multiprocessing import Pool, cpu_count
import tensorflow as tf
from sklearn.preprocessing import StandardScaler, MinMaxScaler, OneHotEncoder
from sklearn.preprocessing import PolynomialFeatures, LabelEncoder
from sklearn.model_selection import KFold, train_test_split
from sklearn.metrics import accuracy_score
from tsfresh.feature_extraction import extract_features
from tsfresh.feature_extraction import settings as tsfresh_settings
from tsfresh.utilities.string_manipulation import get_config_from_string
from modules.datapipeline import get_file_list, load_and_snip, load_data, \
load_split_data, load_harness_data
from modules.digitalsignalprocessing import vectorized_slide_win as vsw
from modules.digitalsignalprocessing import imu_signal_processing
from modules.digitalsignalprocessing import do_pad_fft,\
pressure_signal_processing, infer_frequency
from modules.utils import *
from modules.evaluations import Evaluation
from modules.datapipeline import get_windowed_data, DataSynchronizer,\
parallelize_dataframe
from modules.datapipeline import ProjectFileHandler
from models.ardregression import ARDRegressionClass
from models.knn import KNNClass
from models.svm import SVMClass
from models.lda import LDAClass
from models.svr import SVRClass
from models.logisticregression import LogisticRegressionClass
from models.linearregression import LinearRegressionClass
from models.neuralnet import FNN_HyperModel, LSTM_HyperModel, TunerClass,\
CNN1D_HyperModel
from models.ridgeclass import RidgeClass
from models.resnet import Regressor_RESNET, Classifier_RESNET
from models.xgboostclass import XGBoostClass
from pprint import PrettyPrinter
from sktime.transformations.panel.rocket import (
MiniRocket,
MiniRocketMultivariate,
MiniRocketMultivariateVariable,
)
from config import WINDOW_SIZE, WINDOW_SHIFT, IMU_FS, DATA_DIR, BR_FS
IMU_COLS = ['acc_x', 'acc_y', 'acc_z', 'gyr_x', 'gyr_y', 'gyr_z']
def utc_to_local(utc_dt, tz=None):
return utc_dt.replace(tzinfo=timezone.utc).astimezone(tz=tz)
def datetime_from_utc_to_local(utc_datetime):
now_timestamp = time.time()
offset = datetime.fromtimestamp(now_timestamp) - datetime.utcfromtimestamp(now_timestamp)
return utc_datetime + offset
# Load data
def load_bioharness_file(f:str, skiprows=0, skipfooter=0, **kwargs):
df_list = []
method = partial(pd.read_csv, skipinitialspace=True,
skiprows=list(range(1, skiprows+1)),
skipfooter=skipfooter,
header=0,
**kwargs
)
df = method(f)
if 'Time' not in df.columns.values:
df['Time'] = pd.to_datetime(
df.rename(columns={'Date':'Day'})[
['Day','Month','Year']]) \
+ pd.to_timedelta(df['ms'], unit='ms')
if pd.isna(df['Time']).any():
df['Time'].interpolate(inplace=True)
df['Time'] = pd.to_datetime(df['Time'], format="%d/%m/%Y %H:%M:%S.%f")
df['Time'] = df['Time'].dt.strftime("%d/%m/%Y %H:%M:%S.%f")
return df
def load_bioharness_files(f_list:list, skiprows=0, skipfooter=0, **kwargs):
df_list = []
method = partial(pd.read_csv, skipinitialspace=True,
skiprows=list(range(1, skiprows+1)),
skipfooter=skipfooter,
header=0, **kwargs)
for f in f_list:
df_list.append(load_bioharness_file(f))
df = pd.concat(df_list, ignore_index=True)
return df
def bioharness_datetime_to_seconds(val):
fmt = "%d/%m/%Y %H:%M:%S.%f"
dstr = datetime.strptime(val, fmt)
seconds = dstr.timestamp()
return seconds
def load_imu_file(imu_file:str):
hdr_file = imu_file.replace('imudata.gz', 'recording.g3')
df = pd.read_json(imu_file, lines=True, compression='gzip')
hdr = pd.read_json(hdr_file, orient='index')
hdr = hdr.to_dict().pop(0)
if df.empty: return df, hdr
data_df = pd.DataFrame(df['data'].tolist())
df = pd.concat([df.drop('data', axis=1), data_df], axis=1)
iso_tz = hdr['created']
tzinfo = pytz.timezone(hdr['timezone'])
# adjust for UTC
start_time = datetime.fromisoformat(iso_tz[:-1])
start_time = utc_to_local(start_time, tz=tzinfo).astimezone(tzinfo)
na_inds = df.loc[pd.isna(df['accelerometer']), :].index.values
df.drop(index=na_inds, inplace=True)
imu_times = df['timestamp'].values
df['timestamp_interp'] = imu_times
df['timestamp_interp'] = df['timestamp_interp'].interpolate()
imu_times = df['timestamp_interp'].values
imu_datetimes = [start_time + timedelta(seconds=val) \
for val in imu_times]
imu_s = np.array([time.timestamp() for time in imu_datetimes])
df['sec'] = imu_s
time_check_thold = df['sec'].min() + 3*3600
mask = df['sec'] > time_check_thold
if np.any(mask):
df = df[np.logical_not(mask)]
return df, hdr
def load_imu_files(f_list:list):
data, hdr = [], []
tmp = []
for f in f_list:
tmp.append(load_imu_file(f))
for l in tmp:
data.append(l[0])
hdr.append(l[1])
data_df = pd.concat(data, axis=0)
return data_df, hdr
def load_e4_file(e4_file:str):
''' First row is the initial time of the session as unix time.
Second row is the sample rate in Hz'''
zip_file = ZipFile(e4_file)
dfs = {csv_file.filename: pd.read_csv(zip_file.open(csv_file.filename)
,header=None)
for csv_file in zip_file.infolist()
if csv_file.filename.endswith('.csv')}
bvp = dfs["BVP.csv"]
t0 = bvp.iloc[0].values[0]
fs = bvp.iloc[1].values[0]
nsamples = len(bvp) - 2
t0_datetime = datetime.utcfromtimestamp(t0)
t0_local = datetime_from_utc_to_local(t0_datetime)
time = [t0_local.timestamp() + ind*(1/fs) for ind in
range(nsamples)]
tmp = [np.nan, np.nan]
time = tmp + time
bvp.rename(columns={0: "bvp"}, inplace=True)
bvp['sec'] = np.array(time)
head = bvp.iloc[[0, 1]]
bvp.drop(inplace=True, index=[0, 1])
hdr = {'start_time': head.iloc[0,0],
'fs': head.iloc[0,1]}
return bvp, hdr
def load_e4_files(f_list:list):
tmp = []
data = []
hdr = []
for f in f_list:
tmp.append(load_e4_file(f))
for d, h in tmp:
data.append(d)
hdr.append(h)
data_df = pd.concat(data, axis=0)
return data_df, hdr
# Synchronising data
def sync_to_ref(df0, df1):
dsync0 = DataSynchronizer()
dsync1 = DataSynchronizer()
time0 = df0['sec'].values
time1 = df1['sec'].values
t0 = max((time0[0], time1[0]))
t1 = min((time0[-1], time1[-1]))
dsync0.set_bounds(time0, t0, t1)
dsync1.set_bounds(time1, t0, t1)
return dsync0.sync_df(df0), dsync1.sync_df(df1)
def pss_br_calculations(win, pss_df=None, br_df=None):
n_out = 5
if win[-1] == 0: return [None]*n_out
dsync = DataSynchronizer()
pss_fs = BR_FS
pss_col = [col for col in pss_df.columns.values if\
'breathing' in col.lower()][0]
pss_ms = pss_df['ms'].values
br_ms = br_df['ms'].values
t0, t1 = pss_ms[win][0], pss_ms[win][-1]
diff = pss_ms[win][1:] - pss_ms[win][:-1]
mask = np.abs(diff/1e3) > 60
diff_chk = np.any(mask)
if diff_chk: return [None]*n_out
# Get pressure estimate for window
pss_win = pss_df.iloc[win]
pss_data = pss_win[pss_col]
pss_filt = pressure_signal_processing(pss_data, fs=pss_fs)
xf, yf = do_pad_fft(pss_filt, fs=pss_fs)
pss_est = xf[yf.argmax()]*60
# Sync and get summary br output
dsync.set_bounds(br_ms, t0, t1)
br_win = dsync.sync_df(br_df)
br_out = np.median(br_win['BR'].values)
# Get subject and condition
sbj_out = pss_win['subject'].values[0]
time_out = np.median(pss_win['sec'].values)
return time_out, pss_est, br_out, sbj_out, cond_out
def get_pss_br_estimates(pss_df, br_df, window_size=12, window_shift=1):
pss_fs = BR_FS
# pss_col = [col for col in pss_df.columns.values if\
# 'breathing' in col.lower()][0]
pss_ms = pss_df['sec'].values
br_ms = br_df['sec'].values
inds = np.arange(0, len(pss_ms))
vsw_out = vsw(inds, len(inds), sub_window_size=int(window_size*pss_fs),
stride_size=int(window_shift*pss_fs))
# dsync = DataSynchronizer()
pss_est, br_out = [], []
cond_out, sbj_out = [], []
func = partial(pss_br_calculations, pss_df=pss_df, br_df=br_df)
# for i, win in enumerate(vsw_out):
# tmp = func(win)
with Pool(cpu_count()) as p:
tmp = p.map(func, vsw_out)
time_out, pss_est, br_out, sbj_out, cond_out = zip(*tmp)
time_array = np.array(time_out)
pss_est_array = np.array(pss_est)
br_out_array = np.array(br_out)
sbj_out_array = np.array(sbj_out)
cond_out_array = np.array(cond_out)
df = pd.DataFrame(
np.array(
[time_array, sbj_out_array, cond_out_array,
pss_est_array, br_out_array]
).T,
columns=['ms', 'subject', 'condition', 'pss', 'br'])
df.dropna(inplace=True)
return df
# Multiprocessing task for windowing dataframe
def imu_df_win_task(w_inds, df, i, cols):
time = df['sec'].values
if w_inds[-1] == 0: return
w_df = df.iloc[w_inds]
t0, t1 = time[w_inds][0], time[w_inds][-1]
diff = time[w_inds[1:]] - time[w_inds[0:-1]]
mask = np.abs(diff)>20
diff_chk = np.any(mask)
if diff_chk:
return
# sbj = w_df['subject'].values.astype(int)
# sbj_mask = np.any((sbj[1:] - sbj[:-1])>0)
# if sbj_mask:
# return
if cols is None:
cols = ['acc_x', 'acc_y', 'acc_z',
'gyr_x', 'gyr_y', 'gyr_z']
data = w_df[cols].values
# DSP
sd_data = (data - np.mean(data, axis=0))/np.std(data, axis=0)
# ys = cubic_interp(sd_data, BR_FS, FS_RESAMPLE)
filt_data = imu_signal_processing(sd_data, IMU_FS)
x_out = pd.DataFrame(filt_data,
columns=[
'acc_x', 'acc_y', 'acc_z',
'gyro_x', 'gyro_y', 'gyro_z',
])
sm_out = w_df['BR'].values
ps_out = w_df['PSS'].values
x_vec_time = np.median(time[w_inds])
fs = 1/np.mean(diff)
ps_freq = int(get_max_frequency(ps_out, fs=fs))
y_tmp = np.array([x_vec_time, np.nanmedian(sm_out), ps_freq])
x_out['sec'] = x_vec_time
x_out['id'] = i
y_out = pd.DataFrame([y_tmp], columns=['sec', 'br', 'pss'])
return x_out, y_out
def get_max_frequency(data, fs=IMU_FS):
data = pressure_signal_processing(data, fs=fs)
xf, yf = do_pad_fft(data, fs=fs)
max_freq = xf[yf.argmax()]*60
return max_freq
def convert_to_float(df):
cols = df.columns.values
if 'sec' in cols:
df['sec'] = df['sec'].astype(float)
if 'pss' in cols:
df['pss'] = df['pss'].astype(float)
if 'br' in cols:
df['br'] = df['br'].astype(float)
if 'subject' in cols:
df['subject'] = df['subject'].astype(float)
def load_and_sync_xsens(subject):
# load imu
imu_list = get_file_list('imudata.gz', sbj=subject)
imu_df_all, imu_hdr_df_all = load_imu_files(imu_list)
# load bioharness
pss_list = get_file_list('*Breathing.csv', sbj=subject)
if len(pss_list) == 0:
pss_list = get_file_list('BR*.csv', sbj=subject)
br_list = get_file_list('*Summary*', sbj=subject)
# load e4 wristband
e4_list = get_file_list('*.zip', sbj=subject)
bvp_df_all, bvp_hdr = load_e4_files(e4_list)
bvp_fs = bvp_hdr[0]['fs']
xsens_list = []
# skip the first and last x minute(s)
minutes_to_skip = .5
br_skiprows = br_skipfooter = int(minutes_to_skip*60)
pss_skiprows = pss_skipfooter = int(minutes_to_skip*60*BR_FS)
# load each bioharness file and sync the imu to it
for pss_file, br_file in zip(pss_list, br_list):
pss_df = load_bioharness_file(pss_file, skiprows=pss_skiprows,
skipfooter=pss_skipfooter,
engine='python')
pss_time = pss_df['Time'].map(bioharness_datetime_to_seconds).values\
.reshape(-1, 1)
pss_df['sec'] = pss_time
br_df = load_bioharness_file(br_file, skiprows=br_skiprows,
skipfooter=br_skipfooter,
engine='python')
br_time = br_df['Time'].map(bioharness_datetime_to_seconds).values\
.reshape(-1, 1)
br_df['sec'] = br_time
# sync
br_df, imu_df = sync_to_ref(br_df, imu_df_all.copy())
pss_df, _ = sync_to_ref(pss_df, imu_df_all.copy())
bvp_df, _ = sync_to_ref(bvp_df_all.copy(), pss_df.copy())
# extract relevant data
acc_data = np.stack(imu_df['accelerometer'].values)
gyr_data = np.stack(imu_df['gyroscope'].values)
x_time = imu_df['sec'].values.reshape(-1, 1)
br_col = [col for col in pss_df.columns.values if\
'breathing' in col.lower()][0]
pss_data = pss_df[br_col].values
pss_data = np.interp(x_time, pss_df['sec'].values, pss_data)\
.reshape(-1, 1)
br_lbl = [col for col in br_df.columns.values if\
'br' in col.lower()][0]
br_data = br_df['BR'].values
br_data = np.interp(x_time, br_df['sec'].values, br_data)\
.reshape(-1, 1)
bvp_data = bvp_df['bvp'].values
bvp_data = np.interp(x_time, bvp_df['sec'].values, bvp_data)\
.reshape(-1, 1)
xsens_data = np.concatenate(
(x_time, br_data, pss_data, bvp_data, acc_data, gyr_data),
axis=1)
columns=['sec' , 'BR' , 'PSS' , 'BVP' ,
'acc_x' , 'acc_y' , 'acc_z' ,
'gyr_x' , 'gyr_y' , 'gyr_z' , ]
xsens_df_tmp = pd.DataFrame(xsens_data, columns=columns)
'''
print("{:.2f}\t{:.2f}\t{:.2f}".format(br_df.sec.iloc[0],
pss_df.sec.iloc[0],
imu_df.sec.iloc[0]))
print("{:.2f}\t{:.2f}\t{:.2f}".format(br_df.sec.iloc[-1],
pss_df.sec.iloc[-1],
imu_df.sec.iloc[-1]))
print(xsens_df_tmp.head())
'''
xsens_list.append(xsens_df_tmp)
if len(xsens_list) > 1:
xsens_df = pd.concat(xsens_list, axis=0, ignore_index=True)
xsens_df.reset_index(drop=True, inplace=True)
else:
xsens_df = xsens_list[0]
return xsens_df
def load_tsfresh(subject, project_dir,
window_size=12, window_shift=0.2, fs=IMU_FS,
overwrite=False):
cols = ['acc_x', 'acc_y', 'acc_z', 'gyro_x', 'gyro_y', 'gyro_z']
pkl_file = join(project_dir, 'tsfresh.pkl')
if exists(pkl_file) and not overwrite:
return pd.read_pickle(pkl_file)
xsens_df = load_and_sync_xsens(subject)
x_df, y_df = get_df_windows(xsens_df,
imu_df_win_task,
window_size=window_size,
window_shift=window_shift,
fs=fs,
)
x_features_df = extract_features(
x_df, column_sort='sec',
column_id='id',
# default_fc_parameters=tsfresh_settings.MinimalFCParameters(),
)
x_features_df.fillna(0, inplace=True)
cols = x_features_df.columns.values
df_out = pd.concat([y_df, x_features_df], axis=1)
df_out.to_pickle(pkl_file)
return df_out
def get_activity_log(subject):
activity_list = get_file_list('activity*.csv', sbj=subject)
activity_dfs = [pd.read_csv(f) for f in activity_list]
return pd.concat(activity_dfs, axis=0)
def get_respiration_log(subject):
log_list = get_file_list('*.json', sbj=subject)
log_dfs = [pd.read_json(f) for f in log_list]
return pd.concat(log_dfs, axis=0)
def get_cal_data(event_df, xsens_df):
fmt ="%Y-%m-%d %H.%M.%S"
cal_list = []
cpms = []
start_sec = 0
stop_sec = 0
for index, row in event_df.iterrows():
event = row['eventTag']
timestamp = row['timestamp']
inhalePeriod = row['inhalePeriod']
exhalePeriod = row['exhalePeriod']
cpm = np.round( 60/(inhalePeriod + exhalePeriod) )
sec = timestamp.to_pydatetime().timestamp()
if event == 'Start':
start_sec = sec
continue
elif event == 'Stop':
stop_sec = sec
dsync = DataSynchronizer()
dsync.set_bounds(xsens_df['sec'].values, start_sec, stop_sec)
sync_df = dsync.sync_df(xsens_df.copy())
cal_data = {'cpm': cpm, 'data': sync_df}
cal_list.append(cal_data)
assert np.round(sync_df.sec.iloc[0])==np.round(start_sec), \
"error with start sync"
assert np.round(sync_df.sec.iloc[-1])==np.round(stop_sec), \
"error with stop sync"
return pd.DataFrame(cal_list)
def get_test_data(cal_df, activity_df, xsens_df):
fmt = "%d/%m/%Y %H:%M:%S"
start_time = cal_df.iloc[-1]['data'].sec.values[-1]
data_df = xsens_df[xsens_df.sec > start_time]
activity_start = 0
activity_end = 0
activity_list = []
for index, row in activity_df.iterrows():
sec = datetime.strptime(row['Timestamps'], fmt)
if row['Event'] == 'start':
activity_start = sec
elif row['Event'] == 'stop':
activity_stop = sec
dsync = DataSynchronizer()
dsync.set_bounds(data_df['sec'].values, activity_start,
activity_stop)
sync_df = dsync.sync_df(data_df.copy())
activity_data = {'activity': row['Activity'], 'data': sync_df}
activity_list.append(activity_data)
return pd.DataFrame(activity_list)
# save evaluation metrics in single file that handles the models for the
# subject and config
class EvalHandler():
def __init__(self, y_true, y_pred, subject, pfh, mdl_str, overwrite=False):
self.subject = subject
self.config = pfh.config
self.parent_directory = join(DATA_DIR, 'subject_specific')
self.fset_id = pfh.fset_id
self.mdl_str = mdl_str
self.overwrite = overwrite
self.evals = Evaluation(y_true, y_pred)
entry = {'subject': self.subject,
'config_id': self.fset_id,
'mdl_str': self.mdl_str,
}
self.entry = {**entry, **self.config, **self.evals.get_evals()}
self.eval_history_file = join(self.parent_directory,
'eval_history.csv')
self.eval_hist = self.load_eval_history()
def load_eval_history(self):
if not exists(self.eval_history_file):
return None
else:
return pd.read_csv(self.eval_history_file)
def update_eval_history(self):
eval_hist = self.eval_hist
if eval_hist is None:
eval_hist = pd.DataFrame([self.entry])
else:
index_list = eval_hist[
(eval_hist['subject'] == self.entry['subject']) &\
(eval_hist['config_id'] == self.entry['config_id']) &\
(eval_hist['mdl_str'] == self.entry['mdl_str'])\
].index.tolist()
if len(index_list) == 0:
print("adding new entry")
eval_hist = eval_hist._append(self.entry, ignore_index=True)
elif index_list is not None and self.overwrite:
eval_hist.loc[index_list[0]] = self.entry
self.eval_hist = eval_hist
def save_eval_history(self):
self.eval_hist.to_csv(self.eval_history_file, index=False)
# Train IMU - RR models across subjects
def imu_rr_model(subject,
window_size=12,
window_shift=0.2,
lbl_str='pss',
mdl_str='knn',
overwrite=False,
feature_method='tsfresh',
train_len:int=3,
test_standing=False,
):
# window_size, window_shift, intra, inter
cal_str = 'cpm'
fs = IMU_FS
tmp = []
imu_cols = ['acc_x', 'acc_y', 'acc_z', 'gyro_x', 'gyro_y', 'gyro_z']
do_minirocket = False
use_tsfresh = False
overwrite_tsfresh = True
train_size = int(train_len)
if feature_method == 'tsfresh':
use_tsfresh = True
elif feature_method == 'minirocket':
do_minirocket = True
config = {'window_size' : window_size,
'window_shift' : window_shift,
'lbl_str' : lbl_str,
'do_minirocket' : do_minirocket,
'use_tsfresh' : use_tsfresh,
'train_len' : train_len,
}
pfh = ProjectFileHandler(config)
pfh.set_home_directory(join(DATA_DIR, 'subject_specific', subject))
pfh.set_parent_directory('imu_rr')
id_check = pfh.get_id_from_config()
if id_check is None:
pfh.set_project_directory()
pfh.save_metafile()
else:
pfh.set_id(int(id_check))
pfh.set_project_directory()
print('Using pre-set data id: ', pfh.fset_id)
project_dir = pfh.project_directory
marker = f'imu_rr_{subject}_id{pfh.fset_id}'
if not use_tsfresh:
xsens_df = load_and_sync_xsens(subject)
else:
xsens_df = load_tsfresh(subject,
project_dir,
window_size=window_size,
window_shift=window_shift,
fs=IMU_FS,
overwrite=overwrite_tsfresh)
activity_df = get_activity_log(subject)
event_df = get_respiration_log(subject)
cal_df = get_cal_data(event_df, xsens_df)
# include standing or not
test_df = get_test_data(cal_df, activity_df, xsens_df)
ipdb.set_trace()
for combi in combinations(cal_df[cal_str].values, train_len):
config[cal_cpm] = combi
train_df = pd.concat(
[cal_df[cal_df[cal_cpm] == cpm]['data'] for cpm in combi],
axis=0
)
assert np.isin(train_df.index.values, test_df.index.values).any()==False,\
"overlapping test and train data"
print("train")
print(train_df.shape)
print("test")
print(test_df.shape)
if do_minirocket:
x_train_df, y_train_df = get_df_windows(train_df,
imu_df_win_task,
window_size=window_size,
window_shift=window_shift,
fs=fs,
)
x_test_df, y_test_df = get_df_windows(test_df,
imu_df_win_task,
window_size=window_size,
window_shift=window_shift,
fs=fs,
)
x_train = make_windows_from_id(x_train_df, imu_cols)
x_test = make_windows_from_id(x_test_df, imu_cols)
y_train = y_train_df[lbl_str].values.reshape(-1, 1)
y_test = y_test_df[lbl_str].values.reshape(-1, 1)
print("minirocket transforming...")
x_train = np.swapaxes(x_train, 1, 2)
x_test = np.swapaxes(x_test, 1, 2)
minirocket = MiniRocketMultivariate()
x_train = minirocket.fit_transform(x_train)
x_test = minirocket.transform(x_test)
elif use_tsfresh:
x_train = train_df.iloc[:, 3:].values
y_train = train_df[lbl_str].values.reshape(-1, 1)
x_test = test_df.iloc[:, 3:].values
y_test = test_df[lbl_str].values.reshape(-1, 1)
else:
x_train_df, y_train_df = get_df_windows(train_df,
imu_df_win_task,
window_size=window_size,
window_shift=window_shift,
fs=fs,
)
x_test_df, y_test_df = get_df_windows(test_df,
imu_df_win_task,
window_size=window_size,
window_shift=window_shift,
fs=fs,
)
x_train = make_windows_from_id(x_train_df, imu_cols)
x_test = make_windows_from_id(x_test_df, imu_cols)
y_train = y_train_df[lbl_str].values.reshape(-1, 1)
y_test = y_test_df[lbl_str].values.reshape(-1, 1)
transforms, model = model_training(mdl_str, x_train, y_train,
marker, validation_data=None,
overwrite=overwrite,
is_regression=True,
project_directory=project_dir,
window_size=int(window_size*fs),
extra_train=200,
)
if transforms is not None:
x_test = transforms.transform(x_test)
preds = model.predict(x_test)
eval_handle = EvalHandler(y_test.flatten(), preds.flatten(), subject,
pfh, mdl_str, overwrite=overwrite)
eval_handle.update_eval_history()
eval_handle.save_eval_history()
pp = PrettyPrinter()
pp.pprint(eval_handle.load_eval_history())
fig, ax = plt.subplots()
fig_title = ' '.join([mdl_str, subject, combi])
ax.plot(y_test)
ax.plot(preds)
ax.set_title(fig_title)
ax.legend([lbl_str, 'pred'])
fig_dir = join(project_dir, 'figures',)
if not exists(fig_dir): mkdir(fig_dir)
fig.savefig(join(fig_dir, mdl_str))
def arg_parser():
parser = argparse.ArgumentParser()
parser.add_argument("-m", '--model', type=str,
default='linreg',
choices=['linreg', 'ard', 'xgboost', 'knn',
'svr', 'cnn1d', 'fnn', 'lstm', 'ridge',
'elastic'],
)
parser.add_argument("-s", '--subject', type=int,
default=2,
choices=list(range(1,3))+[-1],
)
parser.add_argument("-f", '--feature_method', type=str,
default='minirocket',
choices=['tsfresh', 'minirocket', 'None']
)
parser.add_argument("-o", '--overwrite', type=int,
default=0,
)
parser.add_argument('--win_size', type=int,
default=12,
)
parser.add_argument('--win_shift', type=float,
default=0.2,
)
parser.add_argument('-l', '--lbl_str', type=str,
default='pss',
)
parser.add_argument('-tl', '--train_len', type=int,
default=3,
help='minutes of data to use for calibration'
)
args = parser.parse_args()
return args
if __name__ == '__main__':
# choose either intra or inter subject features to use for model training
# '[!M]*'
np.random.seed(100)
n_subject_max = 2
args = arg_parser()
mdl_str = args.model
subject = args.subject
feature_method = args.feature_method
window_size = args.win_size
window_shift = args.win_shift
lbl_str = args.lbl_str
train_len = args.train_len
overwrite = args.overwrite
print(args)
assert train_len>0,"--train_len must be an integer greater than 0"
subject_pre_string = 'Pilot'
if subject > 0:
subject = subject_pre_string+str(subject).zfill(2)
imu_rr_model(subject, window_size=window_size, window_shift=window_shift,
lbl_str=lbl_str, mdl_str=mdl_str, overwrite=overwrite,
feature_method=feature_method, train_len=train_len
)
else:
subjects = [subject_pre_string+str(i).zfill(2) for i in \
range(1, n_subject_max+1) if i not in imu_issues]
imu_rr_func = partial(imu_rr_model,
window_size=window_size,
window_shift=window_shift,
lbl_str=lbl_str,
mdl_str=mdl_str,
overwrite=overwrite,
feature_method=feature_method,
train_len=train_len
)
if mdl_str in ['fnn', 'lstm', 'cnn1d', 'elastic', 'ard', 'xgboost']:
for subject in subjects:
imu_rr_func(subject)
else:
ncpu = min(len(subjects), cpu_count())
with Pool(ncpu) as p:
p.map(imu_rr_func, subjects)
print(args)