Newer
Older
from datetime import datetime
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from regress_rr import load_tsfresh
from os.path import join
from os import makedirs
import ipdb
import joblib
from regress_rr import (
get_activity_log, load_and_sync_xsens, get_respiration_log,
get_cal_data
)
from regress_rr import get_test_data as get_raw_test_data
from modules.evaluations import Evaluation
from modules.digitalsignalprocessing import (
movingaverage, butter_lowpass_filter)
from sklearn.preprocessing import (
PolynomialFeatures, LabelEncoder, StandardScaler
)
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
plt.close('all')
plt.rcParams.update({'figure.titlesize' : 8,
'axes.titlesize' : 7,
'axes.labelsize' : 7,
'xtick.labelsize' : 6,
'ytick.labelsize' : 6,
'legend.fontsize' : 6,
'legend.title_fontsize' : 6,
})
window_size = 20
window_shift = 0.05
# get the test data for the subject
# load imu, bvp, and imu+bvp data for the subject
# get the lin reg data for the subject
# plot the pss vs the linear regression data for the subject
# highlight standing periods
sbj = 'S01'
sens_list = ['imu', 'bvp', 'imu-bvp']
# cfg_ids = [4, 0, 0]
cfg_ids = [5, 11, 4]
lbl_str = 'pss'
mdl_dir = join(DATA_DIR, 'subject_specific', sbj)
mdl_file = 'linr_model.joblib'
tsfresh_dir = join(
mdl_dir,
'tsfresh__winsize_{0}__winshift_{1}'.format(window_size, window_shift)
)
combi_strs = ['combi7.0-10.0-12.0-15.0-17.0']*3
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
from matplotlib.animation import FuncAnimation
cm = 1/2.54
class AnimationPlotter():
def __init__(self, x, data:list, duration:int, buff_len:int,
vname='test.mp4'):
self.data = data
self.fig, self.axs = plt.subplots(3, 1, dpi=200,
figsize=(8*(4/3)*cm, 8*cm))
self.duration = duration
self.buff_len = buff_len
self.x0 = x[0]
self.x = x - x[0]
self.vname = vname
self.cm = [
cycler('color', sns.color_palette('dark')),
cycler('color', sns.color_palette('muted')),
cycler('color', sns.color_palette('pastel')),
]
self.lines=[]
for i, ax in enumerate(self.axs):
ax.set_prop_cycle(self.cm[i])
ndim = self.data[i].shape[-1]
l = ax.plot(np.arange(0, buff_len), np.zeros((buff_len, ndim)))
self.lines.append(l)
ax.set_xlabel('Time (s)')
if i == 0:
# twin = ax.twinx()
ax.set_ylabel('Pressure')
# twin.set_ylabel('BR')
elif i == 1:
ax.set_ylabel('Accelerometer')
elif i == 2:
ax.set_ylabel('Gyroscope')
self.axs[1].legend(['x', 'y', 'z'], prop={'size': 6}, loc='upper left')
self.axs[0].set_xticklabels({})
self.axs[1].set_xticklabels({})
def animate(self, frame):
for i, m_line in enumerate(self.lines):
data = self.data[i]
sect = np.arange(frame, frame+self.buff_len)
if isinstance(m_line, list):
for j, m_l in enumerate(m_line):
m_l.set_data(self.x[sect], data[sect, j])
else:
m_line.set_data(self.x[sect], data[sect])
for ax in self.axs: ax.relim(); ax.autoscale_view(True, True, True);
plt.draw()
# return self.lines
def run(self):
ani = FuncAnimation(self.fig, self.animate, frames=self.duration,
repeat=False, interval=9)
ani.save(self.vname, writer='ffmpeg', codec='h264')
# plt.show()
return ani
def do_animation(sect_duration, buffer_duration, sens_list=['imu', 'bvp']):
xsens_df = load_and_sync_xsens(sbj, sens_list=sens_list)
activity_df = get_activity_log(sbj).reset_index(drop=True)
event_df = get_respiration_log(sbj)
cal_df = get_cal_data(event_df, xsens_df)
# include standing or not
test_df_tmp = get_raw_test_data(cal_df, activity_df, xsens_df, 1)
test_df = pd.concat([df for df in test_df_tmp['data']], axis=0)
# cmap = sns.color_palette('Paired')
plot_strs = ['PSS']
acc_cols = ['acc_x', 'acc_y', 'acc_z']
gyro_cols = ['gyro_x', 'gyro_y', 'gyro_z']
def run_anim(df, vname):
df['PSS'] = StandardScaler().fit_transform(
df.PSS.values.reshape(-1, 1)).flatten()
df[acc_cols] = StandardScaler().fit_transform(df[acc_cols])
df[gyro_cols] = StandardScaler().fit_transform(df[gyro_cols])
x = df.sec.values
data = (df[plot_strs].values,
df[acc_cols].values,
df[gyro_cols].values,
)
anim = AnimationPlotter(x, data, duration, buff_len, vname=vname)
anim.run()
start_idx = 20*IMU_FS
buff_len = buffer_duration*IMU_FS
duration = sect_duration*IMU_FS
end_idx = start_idx + buff_len + duration
# get 3 calibration steps, 5, 10, 20
muted = sns.color_palette('muted')
pastel = sns.color_palette('pastel')
deep = sns.color_palette('deep')
m_figs, m_axs = [], []
# for i in [0, 2, 3, 4, 6]:
for i in [3]:
cpm = cal_df.cpm.iloc[i]
df = cal_df.data.iloc[i].iloc[start_idx:end_idx, :]
df['PSS'] = StandardScaler().fit_transform(
df.PSS.values.reshape(-1, 1)).flatten()
df[acc_cols] = StandardScaler().fit_transform(df[acc_cols])
df[gyro_cols] = StandardScaler().fit_transform(df[gyro_cols])
x = df.sec.values
data = (df[plot_strs].values,
df[acc_cols].values,
df[gyro_cols].values,
)
anim = AnimationPlotter(x, data, duration, buff_len,
vname='cal'+str(int(cpm))+'.mp4')
# anim.animate(1); plt.show()
# ipdb.set_trace()
'''
fig, ax = plt.subplots(3, 1)
ax[0].plot(df['PSS'], c='k', alpha=0.4)
twin = ax[0].twinx()
twin.plot(df['BR'], c='k')
ax[1].set_prop_cycle(cycler('color', deep))
ax[1].plot(StandardScaler().fit_transform(
df[['acc_x', 'acc_y', 'acc_z']]))
ax[2].set_prop_cycle(cycler('color', pastel))
ax[2].plot(
StandardScaler().fit_transform(df[['gyro_x', 'gyro_y', 'gyro_z']]),
)
m_figs.append(fig)
m_axs.append(ax)
'''
anim.run()
fmt = "%d/%m/%Y %H:%M:%S"
activity_sec = activity_df.Timestamps.map(
lambda x: datetime.strptime(x, fmt).timestamp()
)
seated_start, seated_end = activity_sec.iloc[2], activity_sec.iloc[3]
standing_start, standing_end = activity_sec.iloc[4], activity_sec.iloc[5]
# get seated no2, 7s
seated_df = test_df[
(test_df.sec > seated_start) & (test_df.sec < seated_end)
]
seated_df = seated_df.iloc[start_idx:end_idx, :]
ipdb.set_trace()
run_anim(seated_df, 'seated.mp4')
# get standing no2, 7s
standing_df = test_df[
(test_df.sec > standing_start) & (test_df.sec < standing_end)
]
standing_df = standing_df.iloc[start_idx:end_idx, :]
run_anim(standing_df, 'standing.mp4')
ipdb.set_trace()
def get_model(sens, sbj, cfg_id, combi):
m_dir = f'linreg_{sens}_rr_{sbj}_id{cfg_id}_{combi}'
mdl_fname = join(mdl_dir, sens+'_rr', str(cfg_id).zfill(2), m_dir, mdl_file)
return joblib.load(mdl_fname)
def get_test_data():
test_fname = 'test__winsize_{0}__winshift_{1}__tsfresh.pkl'.format(
window_size, window_shift)
test_df = pd.read_pickle(join(tsfresh_dir, test_fname))
y_cols = ['sec', 'br', 'pss', 'cpm']
x_cols = [col for col in test_df.columns.values if col not in y_cols]
x_test = test_df[x_cols]
y_test = test_df[lbl_str].values.reshape(-1, 1)
time = test_df['sec']
return x_test, y_test, time
if __name__ == '__main__':
activity_log = get_activity_log(sbj)
standing_mask = activity_log['Activity'] == 'standing'
standing_log = activity_log[standing_mask]
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
x_test, y_test, time = get_test_data()
y_out = {}
metrics_dict = {}
x_test_cols = x_test.columns
y_test = movingaverage(y_test, 8)
cm = 1/2.54
fig, axs = plt.subplots(figsize=(14*cm, 7.5*cm), dpi=300)
axs.plot(y_test, label='ground-truth', linewidth=1, c='k');
standing_wins = 10*60
for sens, cfg_id, combi_str in zip(sens_list, cfg_ids, combi_strs):
model = get_model(sens, sbj, cfg_id, combi_str)
if sens == 'imu':
cols = [col for col in x_test_cols if 'acc' in col or 'gyr' in col]
elif sens == 'bvp':
cols = [col for col in x_test_cols if 'bvp' in col]
else:
cols = x_test.columns
poly = PolynomialFeatures(1)
x_test_sens = x_test[cols]
x_test_sens = poly.fit_transform(x_test_sens)
y_pred = model.predict(x_test_sens)
y_pred = movingaverage(y_pred, 64)
evals = Evaluation(y_test.flatten(), y_pred.flatten())
metrics_dict[sens]=evals.get_evals()
axs.plot(y_pred, label=sens.upper(), linewidth=1)
# axs.plot(np.abs(y_test - y_pred), label=sens.upper())
y0 = axs.get_ylim()[-1]
# y1 = axs[1].get_ylim()[-1]
fmt = "%d/%m/%Y %H:%M:%S"
x = np.arange(len(y_test))
for start_, end_ in zip(
standing_log.iloc[::2].iterrows(), standing_log.iloc[1::2].iterrows()
):
start = start_[1]
end = end_[1]
start_sec = datetime.strptime(start['Timestamps'], fmt).timestamp()
end_sec = datetime.strptime(end['Timestamps'], fmt).timestamp()
mask = (time >= start_sec) & (time <= end_sec)
axs.fill_between(x, y0, where=mask, facecolor='k', alpha=0.2)
# axs[1].fill_between(x, y1, where=mask, facecolor='k', alpha=0.2)
diff = np.diff(time)
diff = np.insert(diff, 0, 0)
new_day_idx = diff.argmax()
axs.axvline(new_day_idx, c='r', alpha=0.6, linewidth=1)
# axs[1].axvline(new_day_idx, c='r')
print(metrics_dict)
axs.legend(ncols=4, prop={'size': 6})
# fig.suptitle("RR Predictions during Rest Standing and Sitting")
axs.set_title("Multi-Modal RR Predictions during Rest Standing and Sitting")
# axs[1].set_title("Absolute Error over Time")
axs.set_ylabel("Respiration Rate (CPM)")
# axs[1].set_ylabel("Abs. Error")
fig.savefig('S01cal.png')