Skip to content
Snippets Groups Projects
single_subject_cal_plot.py 10.5 KiB
Newer Older
Raymond Chia's avatar
Raymond Chia committed
from datetime import datetime
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from regress_rr import load_tsfresh
from os.path import join
from os import makedirs
import ipdb
import joblib
Raymond Chia's avatar
Raymond Chia committed
from cycler import cycler
Raymond Chia's avatar
Raymond Chia committed

import pandas as pd

from config import *
Raymond Chia's avatar
Raymond Chia committed
from regress_rr import (
    get_activity_log, load_and_sync_xsens, get_respiration_log,
    get_cal_data
)
from regress_rr import get_test_data as get_raw_test_data
Raymond Chia's avatar
Raymond Chia committed
from modules.evaluations import Evaluation
from modules.digitalsignalprocessing import (
    movingaverage, butter_lowpass_filter)
Raymond Chia's avatar
Raymond Chia committed
from sklearn.preprocessing import (
    PolynomialFeatures, LabelEncoder, StandardScaler
)
Raymond Chia's avatar
Raymond Chia committed

plt.close('all')
plt.rcParams.update({'figure.titlesize'              : 8,
                     'axes.titlesize'                : 7,
                     'axes.labelsize'                : 7,
                     'xtick.labelsize'               : 6,
                     'ytick.labelsize'               : 6,
                     'legend.fontsize'               : 6,
                     'legend.title_fontsize'         : 6,
                    })
window_size = 20
window_shift = 0.05

# get the test data for the subject

# load imu, bvp, and imu+bvp data for the subject

# get the lin reg data for the subject

# plot the pss vs the linear regression data for the subject

# highlight standing periods

sbj = 'S01'
sens_list = ['imu', 'bvp', 'imu-bvp']
# cfg_ids = [4, 0, 0]
cfg_ids = [5, 11, 4]

lbl_str = 'pss'

mdl_dir = join(DATA_DIR, 'subject_specific', sbj)
mdl_file = 'linr_model.joblib'

tsfresh_dir = join(
    mdl_dir,
    'tsfresh__winsize_{0}__winshift_{1}'.format(window_size, window_shift)
)

combi_strs = ['combi7.0-10.0-12.0-15.0-17.0']*3

Raymond Chia's avatar
Raymond Chia committed
from matplotlib.animation import FuncAnimation
cm = 1/2.54

class AnimationPlotter():
    def __init__(self, x, data:list, duration:int, buff_len:int,
                 vname='test.mp4'):
        self.data = data
        self.fig, self.axs = plt.subplots(3, 1, dpi=200,
                                          figsize=(8*(4/3)*cm, 8*cm))
        self.duration = duration
        self.buff_len = buff_len
        self.x0 = x[0]
        self.x = x - x[0]
        self.vname = vname

        self.cm = [
            cycler('color', sns.color_palette('dark')),
            cycler('color', sns.color_palette('muted')),
            cycler('color', sns.color_palette('pastel')),
        ]

        self.lines=[]
        for i, ax in enumerate(self.axs):
            ax.set_prop_cycle(self.cm[i])
            ndim = self.data[i].shape[-1]
            l = ax.plot(np.arange(0, buff_len), np.zeros((buff_len, ndim)))
            self.lines.append(l)

            ax.set_xlabel('Time (s)')
            if i == 0:
                # twin = ax.twinx()
                ax.set_ylabel('Pressure')
                # twin.set_ylabel('BR')
            elif i == 1:
                ax.set_ylabel('Accelerometer')
            elif i == 2:
                ax.set_ylabel('Gyroscope')
        self.axs[1].legend(['x', 'y', 'z'], prop={'size': 6}, loc='upper left')
        self.axs[0].set_xticklabels({})
        self.axs[1].set_xticklabels({})

    def animate(self, frame):
        for i, m_line in enumerate(self.lines):
            data = self.data[i]
            sect = np.arange(frame, frame+self.buff_len)
            if isinstance(m_line, list):
                for j, m_l in enumerate(m_line):
                    m_l.set_data(self.x[sect], data[sect, j])
            else:
                m_line.set_data(self.x[sect], data[sect])
        for ax in self.axs: ax.relim(); ax.autoscale_view(True, True, True);
        plt.draw()
        # return self.lines

    def run(self):
        ani = FuncAnimation(self.fig, self.animate, frames=self.duration,
                            repeat=False, interval=9)
        ani.save(self.vname, writer='ffmpeg', codec='h264')
        # plt.show()
        return ani

def do_animation(sect_duration, buffer_duration, sens_list=['imu', 'bvp']):
    xsens_df    = load_and_sync_xsens(sbj, sens_list=sens_list)
    activity_df = get_activity_log(sbj).reset_index(drop=True)
    event_df    = get_respiration_log(sbj)

    cal_df = get_cal_data(event_df, xsens_df)

    # include standing or not
    test_df_tmp = get_raw_test_data(cal_df, activity_df, xsens_df, 1)
    test_df = pd.concat([df for df in test_df_tmp['data']], axis=0)

    # cmap = sns.color_palette('Paired')

    plot_strs = ['PSS']
    acc_cols = ['acc_x', 'acc_y', 'acc_z']
    gyro_cols = ['gyro_x', 'gyro_y', 'gyro_z']

    def run_anim(df, vname):
        df['PSS'] = StandardScaler().fit_transform(
            df.PSS.values.reshape(-1, 1)).flatten()
        df[acc_cols] = StandardScaler().fit_transform(df[acc_cols])
        df[gyro_cols] = StandardScaler().fit_transform(df[gyro_cols])
        x = df.sec.values

        data = (df[plot_strs].values,
                df[acc_cols].values,
                df[gyro_cols].values,
               )
        
        anim = AnimationPlotter(x, data, duration, buff_len, vname=vname)
        anim.run()

    start_idx = 20*IMU_FS
    buff_len = buffer_duration*IMU_FS
    duration = sect_duration*IMU_FS

    end_idx = start_idx + buff_len + duration

    # get 3 calibration steps, 5, 10, 20
    muted = sns.color_palette('muted')
    pastel = sns.color_palette('pastel')
    deep = sns.color_palette('deep')
    m_figs, m_axs = [], []
    # for i in [0, 2, 3, 4, 6]:
    for i in [3]:
        cpm = cal_df.cpm.iloc[i]
        df = cal_df.data.iloc[i].iloc[start_idx:end_idx, :]
        df['PSS'] = StandardScaler().fit_transform(
            df.PSS.values.reshape(-1, 1)).flatten()
        df[acc_cols] = StandardScaler().fit_transform(df[acc_cols])
        df[gyro_cols] = StandardScaler().fit_transform(df[gyro_cols])
        x = df.sec.values

        data = (df[plot_strs].values,
                df[acc_cols].values,
                df[gyro_cols].values,
               )
        
        anim = AnimationPlotter(x, data, duration, buff_len,
                                vname='cal'+str(int(cpm))+'.mp4')
        # anim.animate(1); plt.show()
        # ipdb.set_trace()

        '''
        fig, ax = plt.subplots(3, 1)
        ax[0].plot(df['PSS'], c='k', alpha=0.4)
        twin = ax[0].twinx()
        twin.plot(df['BR'], c='k')
        ax[1].set_prop_cycle(cycler('color', deep))
        ax[1].plot(StandardScaler().fit_transform(
            df[['acc_x', 'acc_y', 'acc_z']]))

        ax[2].set_prop_cycle(cycler('color', pastel))
        ax[2].plot(
            StandardScaler().fit_transform(df[['gyro_x', 'gyro_y', 'gyro_z']]),
        )
        m_figs.append(fig)
        m_axs.append(ax)
        '''
        anim.run()

    fmt = "%d/%m/%Y %H:%M:%S"
    activity_sec = activity_df.Timestamps.map(
        lambda x: datetime.strptime(x, fmt).timestamp()
    )
    seated_start, seated_end = activity_sec.iloc[2], activity_sec.iloc[3]
    standing_start, standing_end = activity_sec.iloc[4], activity_sec.iloc[5]

    # get seated no2, 7s
    seated_df = test_df[
        (test_df.sec > seated_start) & (test_df.sec < seated_end)
    ]
    seated_df = seated_df.iloc[start_idx:end_idx, :]
    ipdb.set_trace()
    run_anim(seated_df, 'seated.mp4')

    # get standing no2, 7s
    standing_df = test_df[
        (test_df.sec > standing_start) & (test_df.sec < standing_end)
    ]
    standing_df = standing_df.iloc[start_idx:end_idx, :]
    run_anim(standing_df, 'standing.mp4')

    ipdb.set_trace()

Raymond Chia's avatar
Raymond Chia committed
def get_model(sens, sbj, cfg_id, combi):
    m_dir = f'linreg_{sens}_rr_{sbj}_id{cfg_id}_{combi}'
    mdl_fname = join(mdl_dir, sens+'_rr', str(cfg_id).zfill(2), m_dir, mdl_file)
    return joblib.load(mdl_fname)

def get_test_data():
    test_fname = 'test__winsize_{0}__winshift_{1}__tsfresh.pkl'.format(
        window_size, window_shift)
    test_df = pd.read_pickle(join(tsfresh_dir, test_fname))
    y_cols = ['sec', 'br', 'pss', 'cpm']
    x_cols = [col for col in test_df.columns.values if col not in y_cols]
    x_test  = test_df[x_cols]
    y_test  = test_df[lbl_str].values.reshape(-1, 1)
    time = test_df['sec']
    return x_test, y_test, time

if __name__ == '__main__':
    activity_log = get_activity_log(sbj)
    standing_mask = activity_log['Activity'] == 'standing'
    standing_log = activity_log[standing_mask]

Raymond Chia's avatar
Raymond Chia committed
    do_animation(20, 15)

Raymond Chia's avatar
Raymond Chia committed
    x_test, y_test, time = get_test_data()
    y_out = {}
    metrics_dict = {}
    x_test_cols = x_test.columns
    y_test = movingaverage(y_test, 8)
    cm = 1/2.54
    fig, axs = plt.subplots(figsize=(14*cm, 7.5*cm), dpi=300)
    axs.plot(y_test, label='ground-truth', linewidth=1, c='k');

    standing_wins = 10*60 
    for sens, cfg_id, combi_str in zip(sens_list, cfg_ids, combi_strs):
        model = get_model(sens, sbj, cfg_id, combi_str)
        if sens == 'imu':
            cols = [col for col in x_test_cols if 'acc' in col or 'gyr' in col]
        elif sens == 'bvp':
            cols = [col for col in x_test_cols if 'bvp' in col]
        else:
            cols = x_test.columns

        poly = PolynomialFeatures(1)
        x_test_sens = x_test[cols]
        x_test_sens = poly.fit_transform(x_test_sens)

        y_pred = model.predict(x_test_sens)
        y_pred = movingaverage(y_pred, 64)

        evals = Evaluation(y_test.flatten(), y_pred.flatten())
        metrics_dict[sens]=evals.get_evals()

        axs.plot(y_pred, label=sens.upper(), linewidth=1)
        # axs.plot(np.abs(y_test - y_pred), label=sens.upper())

    y0 = axs.get_ylim()[-1]
    # y1 = axs[1].get_ylim()[-1]
    fmt = "%d/%m/%Y %H:%M:%S"
    x = np.arange(len(y_test))
    for start_, end_ in zip(
        standing_log.iloc[::2].iterrows(), standing_log.iloc[1::2].iterrows()
    ):
        start = start_[1]
        end = end_[1]
        start_sec = datetime.strptime(start['Timestamps'], fmt).timestamp()
        end_sec = datetime.strptime(end['Timestamps'], fmt).timestamp()
        mask = (time >= start_sec) & (time <= end_sec)
        axs.fill_between(x, y0, where=mask, facecolor='k', alpha=0.2)
        # axs[1].fill_between(x, y1, where=mask, facecolor='k', alpha=0.2)

    diff = np.diff(time)
    diff = np.insert(diff, 0, 0)
    new_day_idx = diff.argmax()

    axs.axvline(new_day_idx, c='r', alpha=0.6, linewidth=1)
    # axs[1].axvline(new_day_idx, c='r')

    print(metrics_dict)
    axs.legend(ncols=4, prop={'size': 6})

    # fig.suptitle("RR Predictions during Rest Standing and Sitting")
    axs.set_title("Multi-Modal RR Predictions during Rest Standing and Sitting")
    # axs[1].set_title("Absolute Error over Time")

Raymond Chia's avatar
Raymond Chia committed
    axs.set_xlabel("Time (sec)")
Raymond Chia's avatar
Raymond Chia committed
    axs.set_ylabel("Respiration Rate (CPM)")
    # axs[1].set_ylabel("Abs. Error")
    fig.savefig('S01cal.png')