Newer
Older
import matplotlib.pyplot as plt
from datetime import datetime, timedelta
import pytz
import pandas as pd
import tensorflow as tf
from os import environ, mkdir, makedirs, listdir, stat, walk
from sys import platform
from os.path import exists as path_exists
from os.path import join as path_join
from os.path import isdir, splitext, sep
from multiprocessing import Pool, cpu_count
from tqdm import tqdm
from functools import partial
from ast import literal_eval
import numpy as np
import glob
import ipdb
import mat73
import re
import json
from scipy.io import loadmat
from sklearn.model_selection import train_test_split, ShuffleSplit
from sklearn.cluster import MiniBatchKMeans
import cv2
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
def datetime_to_sec(time_in, is_iso=False):
dstr = datetime.today()
try:
fmt ="%Y-%m-%d %I.%M.%S.%f %p"
dstr = datetime.strptime(time_in, fmt)
except ValueError:
if 'Take' in time_in:
time_section = time_in[5:-4]
if 'Task' or 'MR' in time_in:
start_ind = re.search(r'\d{4}', time_in)
end_ind = re.search(r'M_', time_in)
time_section = time_in[start_ind.start():end_ind.start()+1]
dstr = datetime.strptime(time_section, "%Y-%m-%d %I.%M.%S %p")
elif '_' in time_in:
fmt = "%Y_%m_%d-%H_%M_%S"
dstr = datetime.strptime(time_in, fmt)
elif '/' in time_in:
fmt = "%d/%m/%Y %H:%M:%S.%f"
dstr = datetime.strptime(time_in, fmt)
elif 'Z' in time_in:
fmt = "%Y%m%dT%H%M%SZ"
dstr = datetime.strptime(time_in, fmt)
sec = dstr.timestamp()
# td = timedelta(hours=dstr.hour,
# minutes=dstr.minute,
# seconds=dstr.second,
# microseconds=dstr.microsecond)
# sec = td.total_seconds()
return sec
def sec_to_datetime(sec):
return datetime.fromtimestamp(sec)
def mat_to_sec(time):
if sum([':'==ch for ch in time]) == 1:
dstr = datetime.strptime(time, '%m/%d/%Y %H:%M')
elif time[-1] == 'M':
dstr = datetime.strptime(time, '%m/%d/%Y %I:%M:%S %p')
elif '.' not in time:
dstr = datetime.strptime(time, '%m/%d/%Y %H:%M:%S')
else:
dstr = datetime.strptime(time, '%m/%d/%Y %H:%M:%S.%f')
sec = dstr.timestamp()
# td = timedelta(hours=dstr.hour,
# minutes=dstr.minute,
# seconds=dstr.second,
# microseconds=dstr.microsecond)
# sec = td.total_seconds()
return sec
def cond_to_label(cond_str:str):
my_dict = {'M': 0, 'R': 1, 'L0': 2, 'L1': 3, 'L2': 4, 'L3': 5}
lbl = my_dict[cond_str]
return lbl
def get_conditions(fname:str):
return fname.split(sep)[-1].split("_")[0]
def split_csv_method(fname:str, skip_ratio=0.8, is_train=True, skiprows=None,
**kwargs):
nrows = None
with open(fname) as f:
nrows_tot = sum(1 for line in f)
nrows_tot -= 1
if skiprows is not None:
nrows_tot = nrows_tot - skiprows
if skip_ratio > 0:
if is_train:
nrows = int(nrows_tot*skip_ratio)
else:
if skiprows is not None:
skiprows += int(nrows_tot*skip_ratio)
else:
skiprows = int(nrows_tot*skip_ratio)
skiprows = range(1, skiprows+1)
df = pd.read_csv(fname, skipinitialspace=True, skiprows=skiprows,
header=0, nrows=nrows, **kwargs)
cond = get_conditions(fname)
df['condition'] = cond
return df
def read_csv_method(fname:str, **kwargs):
df = pd.read_csv(fname, skipinitialspace=True,
header=0, **kwargs)
cond = get_conditions(fname)
df['condition'] = cond
return df
def load_files_conditions(f_list:list, skip_ratio=None, do_multiprocess=True,
**kwargs):
if skip_ratio is not None:
method = partial(split_csv_method, skip_ratio=skip_ratio, **kwargs)
else:
method = partial(read_csv_method, **kwargs)
if do_multiprocess:
with Pool(processes=cpu_count()) as p:
df_list = p.map(method, f_list)
else:
df_gen = map(method, f_list)
df_list = [df for df in df_gen]
df = pd.concat(df_list, ignore_index=True)
df.sort_values(by='sec', inplace=True)
return df
def load_and_snip(f_list:list, ratios=[0.3, 0.1]):
method = partial(read_csv_method)
with Pool(processes=cpu_count()) as p:
df_list = p.map(method, f_list)
if len(ratios) == 2:
for i, df in enumerate(df_list):
l = len(df)
skiprows = int(ratios[0]*l)
nrows = int((1-sum(ratios))*l)+1
df_list[i] = df.iloc[skiprows:(skiprows+nrows)]
return df_list
def get_file_list(starts_with:str, sbj=None):
if sbj is not None:
f_glob = path_join(DATA_DIR, sbj, '**')
else:
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
if starts_with is not None:
f_glob = path_join(f_glob, f'{starts_with}*')
else:
f_glob = path_join(f_glob, '*')
f_list = sorted(glob.glob(f_glob, recursive=True))
# pop zero size files
return f_list
def get_windowed_data(time, data, vsw, thold=100):
out = []
for i, w_inds in tqdm(enumerate(vsw), total=vsw.shape[0]):
if w_inds[-1] == 0: break
t0, t1 = time[w_inds][0], time[w_inds][-1]
diff = time[w_inds[1:]] - time[w_inds[0:-1]]
mask = diff>thold
diff_chk = np.any(mask)
if diff_chk:
continue
out.append(data[w_inds])
return np.array(out)
def get_imu_numpy(x_in):
try:
acc_data = np.array(x_in['accelerometer']\
.map(literal_eval).tolist())
gyr_data = np.array(x_in['gyroscope']\
.map(literal_eval).tolist())
except:
acc_data = np.stack(x_in['accelerometer'].values)
gyr_data = np.stack(x_in['gyroscope'].values)
data = np.concatenate((acc_data, gyr_data), axis=1)
return data
def parallelize_dataframe(df, func):
num_processes = cpu_count()
df_split = np.array_split(df, num_processes)
with Pool(num_processes) as p:
df = pd.concat(p.map(func, df_split))
return df
def get_train_test_df(data_list, test_size=0.2, **kwargs):
# In each of the files: get the last 20% as the test portion
df_list = load_and_snip(data_list, **kwargs)
train_data_df, test_data_df = [], []
func = partial(train_test_split, test_size=test_size,
shuffle=False)
with Pool(cpu_count()) as p:
tmp = p.map(func, df_list)
train_data_df, test_data_df = zip(*tmp)
train_data_df = pd.concat(train_data_df, ignore_index=True)
test_data_df = pd.concat(test_data_df, ignore_index=True)
train_data_df.sort_values(by='sec', inplace=True)
test_data_df.sort_values(by='sec', inplace=True)
overlap_flag = np.isin(train_data_df.sec, test_data_df.sec).any()==False
if not overlap_flag: ipdb.set_trace()
assert overlap_flag, print("overlapping test and train data")
return train_data_df, test_data_df
# Load the data
def load_split_data(subject, use_tsfresh:bool=True, condition:str=None,
test_size=0.2, ratios=[0.1, 0.1]):
'''Loads the data into pandas dataframe
subject: string. Specify which subject ('S12', 'S13' etc)
use_tsfresh: Boolean (default = True). Determines if we are using tsfresh
extracted features or not
condition: string. Specify which condition you're interested in
'''
imu_str = 'xsens'
if use_tsfresh:
imu_str = 'tsfresh'
if condition is not None:
data_glob = f'{condition}_{imu_str}_df'
else:
data_glob = f'*{imu_str}_df'
# use glob pattern to create list of files
data_list = get_file_list(data_glob, sbj=subject)
# data_list = []
# valid = re.compile(r"S[0-9][0-9]")
# for f in tmp:
# check_string = valid.search(f).group()[1:]
# if int(check_string) not in IMU_ISSUES_L:
# print(int(check_string))
# data_list.append(f)
# Clip each file the start and end
if data_list is None: ipdb.set_trace()
train_data_df, test_data_df = get_train_test_df(data_list, ratios=ratios,
test_size=test_size)
return train_data_df, test_data_df
# Load the data
def load_data(subject, glob_pattern, condition:str=None,
ratios=[0.1, 0.1]):
'''Loads the data into pandas dataframe
subject: string. Specify which subject ('S12', 'S13' etc)
condition: string. Specify which condition you're interested in
'''
if condition is not None:
data_glob = f'{condition}_{glob_pattern}_df'
else:
data_glob = f'*{glob_pattern}_df'
# use glob pattern to create list of files
data_list = get_file_list(data_glob, sbj=subject)
# Clip each file the start and end
df_list = load_and_snip(data_list, ratios=ratios)
df = pd.concat(df_list)
df.sort_values(by='sec', inplace=True)
return df
def load_harness_data(subject, data_str:str, condition:str=None, ratios=[0.1, 0.1]):
if condition is not None:
data_glob = f'{condition}_{data_str}_df'
else:
data_glob = f'*{data_str}_df'
# use glob pattern to create list of files
data_list = get_file_list(data_glob, sbj=subject)
# Clip each file the start and end
df_list = load_and_snip(data_list, ratios)
data_df = pd.concat(df_list, ignore_index=True)
data_df.sort_values(by='sec', inplace=True)
return data_df
def shuffle_split(x):
ss = ShuffleSplit(n_splits=1, random_state=10)
x_train, x_test = [], []
for train, test in ss.split(x):
x_train.append(x[train])
x_test.append(x[test])
x_train = np.array(x_train)
x_test = np.array(x_test)
return x_train, x_test
class DataImporter():
def __init__(self):
self.imu_fname = ''
self.timeline_fname = ''
self.summary_fname = ''
self.video_fname = ''
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
if platform =='linux' or platform == 'linux2':
self.sep = "/"
else:
self.sep = "\\"
if platform =='linux' or platform == 'linux2':
self.parent_dir = '/data/rqchia/ARIA/Data'
else:
self.parent_dir = 'D:\\Raymond Chia\\UTS\\Howe Zhu - Data\\'
def import_header_file(self, filename):
df = pd.read_csv(filename, skiprows=1, nrows=1,
usecols=list(range(0,22)), header=None)
return df
# Import labels from csv
def import_labels(self, filename):
if self.nrows_to_import is None:
df = pd.read_csv(filename, skipinitialspace=True)
else:
df = pd.read_csv(filename, nrows=self.nrows_to_import, skipinitialspace=True)
return df
def import_mat_data(self, filename):
try:
data_dict = mat73.loadmat(filename)
except TypeError:
data_dict = loadmat(filename)
times = data_dict['StoreData']
df = pd.DataFrame(times, columns=TIME_COLS)
df = df.applymap(np.squeeze)
# a few nested lists, repeat once more
df = df.applymap(np.squeeze)
return df
def import_time_data(self):
filename = self.timeline_fname
if '.mat' in filename:
return self.import_mat_data(filename)
elif '.csv' in filename:
return pd.read_csv(filename)
def import_imu_data(self):
filename = self.imu_fname
try:
df = pd.read_json(filename, lines=True, compression='gzip')
except EOFError:
df = pd.read_json(splitext(filename)[0], lines=True)
data_df = pd.DataFrame(df['data'].tolist())
df = pd.concat([df.drop('data', axis=1), data_df], axis=1)
hdr = self.import_imu_header()
hdr = hdr.to_dict().pop(0)
return df, hdr
def import_imu_header(self):
return pd.read_json(self.imu_hdr_fname, orient='index')
def import_video(self):
return cv2.VideoCapture(self.import_video)
class DataSynchronizer():
def __init__(self):
self.start_ind = None
self.end_ind = None
# Sync and downsample to match frequences across the datasets
def sync_df_start(self, df):
''' sync dataframe '''
my_df = df.drop(index=df.index[:self.start_ind],
axis=0,
inplace=False)
return my_df
def sync_df_end(self, df):
''' sync dataframe '''
diff = self.end_ind - self.start_ind + 1
my_df = df.drop(index=df.index[diff::],
axis=0,
inplace=False)
return my_df
def sync_df(self, df):
''' sync to mat data '''
my_df = df.iloc[self.start_ind:self.end_ind+1]
# my_df = self.sync_df_start(df)
# my_df = self.sync_df_end(my_df)
return my_df
def set_bounds(self, times, t_start, t_end):
''' sync to using masking method '''
# find the index that is closest to t_start
start_mask0 = times <= t_start
start_mask1 = times > t_start
if not start_mask0.any() and t_start < times[0]:
start0 = times[0]
else:
start0 = times[start_mask0][-1]
start1 = times[start_mask1][0]
# take lowest
dt0 = np.abs(t_start-start0)
dt1 = np.abs(t_start-start1)
if dt0 < dt1:
start_val = start0
else:
start_val = start1
start_ind = np.where(times==start_val)[0][0]
end_mask0 = times <= t_end
end_mask1 = times > t_end
end0 = times[end_mask0][-1]
times_end = times[-1]
if np.isnan(times_end):
# times_end = times[-2] + 1000
times_end = times[-2] + 1
times[-1] = times_end
if not end_mask1.any() and t_end >= times_end:
end1 = times_end
else:
end1 = times[end_mask1][0]
# take dt1
dt0 = np.abs(t_end-end0)
dt1 = np.abs(t_end-end1)
if dt0 < dt1:
end_val = end0
else:
end_val = end1
end_ind = np.where(times==end_val)[0][0]
# end_diff = end_ind - start_ind + 1
self.start_ind = start_ind
self.end_ind = end_ind
class TFDataPipeline():
def __init__(self, window_size=60, batch_size=32):
self.window_size = window_size
self.window_shift = self.window_size
self.batch_size = batch_size
self.mb_kmeans = MiniBatchKMeans(n_clusters=int(self.batch_size//2))
self.shuffle_flag = True
def kcenter(self, x, y):
'''
* get some batches
* perform iterative kcenter_greedy on these batches
* get their scores and weight these batches (x, y, weights)
* returns final centers and max distances
'''
self.mb_kmeans.partial_fit(x, y)
x, dist = self.mb_kmeans.transform(x, y)
# apply threshold
# return weighted labels for each batch, or downsample the batch_size
# to some percentage
pass
def sub_batch(self, x):
sub_x = x.batch(self.window_size, drop_remainder=True)
return sub_x
def get_dataset(self, x, reduce_mean=False):
ds = tf.data.Dataset.from_tensor_slices((x))\
.window(self.window_size, shift=self.window_shift,
drop_remainder=True)\
.flat_map(self.sub_batch)\
.batch(self.batch_size, drop_remainder=True)
if reduce_mean:
ds = ds.map(lambda y: tf.reduce_mean(y, axis=1))
ds = ds.prefetch(1)
return ds
def zip_datasets(self, x_ds, y_ds):
ds = tf.data.Dataset.zip((x_ds, y_ds))
if self.shuffle_flag:
ds.shuffle(3000, reshuffle_each_iteration=True)
return ds
# Data Feature Handler Class:
# Deal with metafile
# Load given a configuration dict
# Set the directory and filename
class ProjectFileHandler():
def __init__(self, config:dict):
self.config = config
self.fset_id = -1
self.metafile_name = 'metafile.json'
self.set_home_directory()
def set_home_directory(self, home_directory=DATA_DIR):
self.home_directory = home_directory
def set_parent_directory(self, parent_directory='imu_mwl'):
self.parent_directory = path_join(self.home_directory,
parent_directory)
makedirs(self.parent_directory, exist_ok=True)
def set_id(self, fset_id:int=-1):
if fset_id != -1:
self.fset_id = fset_id
else:
ww = walk(self.parent_directory, topdown=True)
for _, dirs, _ in ww:
tmp = len(dirs)
break
self.fset_id = tmp
def set_project_directory(self):
if self.fset_id == -1:
self.set_id()
print("Data id not set, auto assigned to: ", self.fset_id)
self.project_directory = path_join(self.parent_directory,
str(self.fset_id).zfill(2))
makedirs(self.project_directory, exist_ok=True)
def get_metafile_path(self):
fname = path_join(self.project_directory, self.metafile_name)
return fname
def get_id_from_config(self):
glob_pattern = path_join(self.parent_directory, '**', '*.json')
mfiles = glob.glob(glob_pattern, recursive=True)
cfg_id = {}
for mfile in mfiles:
fset_id_in = mfile.split(sep)[-2]
with open(mfile, 'r') as f:
cfg_in = json.load(f)
cfg_id[fset_id_in] = cfg_in
if self.config == cfg_in:
return fset_id_in
print("unable to find matching config id")
def save_metafile(self):
fname = self.get_metafile_path()
with open(fname, 'w') as f:
json.dump(self.config, f)