Skip to content
Snippets Groups Projects
regress_rr.py 50.6 KiB
Newer Older
Raymond Chia's avatar
Raymond Chia committed
import glob
Raymond Chia's avatar
Raymond Chia committed
from os import makedirs, mkdir
from os.path import join, exists
import pandas as pd
import numpy as np
import json
import ipdb
import re
import pickle
import sys
import time
Raymond Chia's avatar
Raymond Chia committed
from zipfile import ZipFile
Raymond Chia's avatar
Raymond Chia committed

import argparse
from datetime import datetime, timedelta, timezone, timedelta
import pytz

import matplotlib.pyplot as plt
from functools import partial
from collections import Counter
Raymond Chia's avatar
Raymond Chia committed
from itertools import repeat, chain, combinations
Raymond Chia's avatar
Raymond Chia committed
from multiprocessing import Pool, cpu_count
import tensorflow as tf

Raymond Chia's avatar
Raymond Chia committed
from sklearn.decomposition import PCA
Raymond Chia's avatar
Raymond Chia committed
from sklearn.preprocessing import StandardScaler, MinMaxScaler, OneHotEncoder
from sklearn.preprocessing import PolynomialFeatures, LabelEncoder
from sklearn.model_selection import KFold, train_test_split
from sklearn.metrics import accuracy_score

from tsfresh.feature_extraction import extract_features
from tsfresh.feature_extraction import settings as tsfresh_settings
from tsfresh.utilities.string_manipulation import get_config_from_string

from modules.datapipeline import get_file_list, load_and_snip, load_data, \
        load_split_data, load_harness_data
from modules.digitalsignalprocessing import vectorized_slide_win as vsw
from modules.digitalsignalprocessing import imu_signal_processing
Raymond Chia's avatar
Raymond Chia committed
from modules.digitalsignalprocessing import bvp_signal_processing
Raymond Chia's avatar
Raymond Chia committed
from modules.digitalsignalprocessing import hernandez_sp, reject_artefact
Raymond Chia's avatar
Raymond Chia committed
from modules.digitalsignalprocessing import do_pad_fft,\
Raymond Chia's avatar
Raymond Chia committed
        pressure_signal_processing, infer_frequency, movingaverage
Raymond Chia's avatar
Raymond Chia committed
from modules.utils import *

from modules.evaluations import Evaluation
from modules.datapipeline import get_windowed_data, DataSynchronizer,\
        parallelize_dataframe
from modules.datapipeline import ProjectFileHandler
from models.ardregression import ARDRegressionClass
from models.knn import KNNClass
from models.svm import SVMClass
from models.lda import LDAClass
from models.svr import SVRClass
from models.logisticregression import LogisticRegressionClass
from models.linearregression import LinearRegressionClass
from models.neuralnet import FNN_HyperModel, LSTM_HyperModel, TunerClass,\
        CNN1D_HyperModel
from models.ridgeclass import RidgeClass
from models.resnet import Regressor_RESNET, Classifier_RESNET
from models.xgboostclass import XGBoostClass

from pprint import PrettyPrinter

from sktime.transformations.panel.rocket import (
        MiniRocket,
        MiniRocketMultivariate,
        MiniRocketMultivariateVariable,
)

Raymond Chia's avatar
Raymond Chia committed
from config import WINDOW_SIZE, WINDOW_SHIFT, IMU_FS, DATA_DIR, BR_FS\
Raymond Chia's avatar
Raymond Chia committed
        , FS_RESAMPLE, PPG_FS
Raymond Chia's avatar
Raymond Chia committed

Raymond Chia's avatar
Raymond Chia committed
IMU_COLS =  ['acc_x', 'acc_y', 'acc_z', 'gyro_x', 'gyro_y', 'gyro_z']
Raymond Chia's avatar
Raymond Chia committed

def utc_to_local(utc_dt, tz=None):
rchia16's avatar
rchia16 committed
    """Converts UTC datetime to specified timezone

    Arguments
    ---------
    utc_dt : datetime
        input datetime to convert
    tz : pytz.timezone
        timezone


    Returns
    -------
    datetime
    """
Raymond Chia's avatar
Raymond Chia committed
    return utc_dt.replace(tzinfo=timezone.utc).astimezone(tz=tz)

Raymond Chia's avatar
Raymond Chia committed
def datetime_from_utc_to_local(utc_datetime):
rchia16's avatar
rchia16 committed
    """Converts UTC datetime to local time

    Arguments
    ---------
    utc_dt : datetime
        input datetime to convert


    Returns
    -------
    datetime
    """
Raymond Chia's avatar
Raymond Chia committed
    now_timestamp = time.time()
    offset = datetime.fromtimestamp(now_timestamp) - datetime.utcfromtimestamp(now_timestamp)
    return utc_datetime + offset

Raymond Chia's avatar
Raymond Chia committed
# Load data
def load_bioharness_file(f:str, skiprows=0, skipfooter=0, **kwargs):
rchia16's avatar
rchia16 committed
    """
    Load and retrieve bioharness file. Interpolates any empty time rows

    Arguments
    ---------
    f : str
        filename
    skiprows : int
        num. of rows to skip from top
    skipfooter : int
        num. of rows to skip from bottom
    **kwargs


    Returns
    -------
    pandas.DataFrame
    """
Raymond Chia's avatar
Raymond Chia committed
    df_list = []
rchia16's avatar
rchia16 committed
    fmt = "%d/%m/%Y %H:%M:%S.%f"
    # Set keyword arguments for read_csv
Raymond Chia's avatar
Raymond Chia committed
    method = partial(pd.read_csv, skipinitialspace=True,
                     skiprows=list(range(1, skiprows+1)),
                     skipfooter=skipfooter,
                     header=0,
                     **kwargs
                    )
    df = method(f)
    if 'Time' not in df.columns.values:
rchia16's avatar
rchia16 committed
        # Set to datetime format
Raymond Chia's avatar
Raymond Chia committed
        df['Time'] = pd.to_datetime(
            df.rename(columns={'Date':'Day'})[
                ['Day','Month','Year']]) \
                + pd.to_timedelta(df['ms'], unit='ms')
rchia16's avatar
rchia16 committed
        # Interpolate empty time rows
Raymond Chia's avatar
Raymond Chia committed
        if pd.isna(df['Time']).any():
            df['Time'].interpolate(inplace=True)
rchia16's avatar
rchia16 committed
        df['Time'] = pd.to_datetime(df['Time'], format=fmt)
        df['Time'] = df['Time'].dt.strftime(fmt)
Raymond Chia's avatar
Raymond Chia committed
    return df

def load_bioharness_files(f_list:list, skiprows=0, skipfooter=0, **kwargs):
rchia16's avatar
rchia16 committed
    """
    Appends the output for load_bioharness_file

    Arguments
    ---------
    f_list : list
        list of bioharness files to read
    skiprows : int
        num. of rows to skip from top
    skipfooter : int
        num. of rows to skip from bottom
    **kwargs


    Returns
    -------
    pandas.DataFrame
    """
Raymond Chia's avatar
Raymond Chia committed
    df_list = []
    for f in f_list:
        df_list.append(load_bioharness_file(f))

    df = pd.concat(df_list, ignore_index=True)
    return df

def bioharness_datetime_to_seconds(val):
rchia16's avatar
rchia16 committed
    """
    Converts the bioharness datetime to seconds

    Arguments
    ---------
    val : str
        bioharness time string


    Returns
    -------
    float
    """
Raymond Chia's avatar
Raymond Chia committed
    fmt = "%d/%m/%Y %H:%M:%S.%f" 
    dstr = datetime.strptime(val, fmt)
    seconds = dstr.timestamp()
    return seconds

def load_imu_file(imu_file:str):
rchia16's avatar
rchia16 committed
    """
    Load and retrieve the specified tobtii imu compressed file

    Arguments
    ---------
    imu_file : str
        Tobii Glasses IMU file to read in gzip compressed format


    Returns
    -------
    pd.DataFrame, dict
    """
Raymond Chia's avatar
Raymond Chia committed
    hdr_file = imu_file.replace('imudata.gz', 'recording.g3')

    df = pd.read_json(imu_file, lines=True, compression='gzip')
    hdr = pd.read_json(hdr_file, orient='index')
    hdr = hdr.to_dict().pop(0)

    if df.empty: return df, hdr

rchia16's avatar
rchia16 committed
    # Create DataFrame from data column
Raymond Chia's avatar
Raymond Chia committed
    data_df = pd.DataFrame(df['data'].tolist())
    df = pd.concat([df.drop('data', axis=1), data_df], axis=1)

    iso_tz = hdr['created']
    tzinfo = pytz.timezone(hdr['timezone'])
    # adjust for UTC
    start_time = datetime.fromisoformat(iso_tz[:-1])
    start_time = utc_to_local(start_time, tz=tzinfo).astimezone(tzinfo)

rchia16's avatar
rchia16 committed
    # Drop NA rows
Raymond Chia's avatar
Raymond Chia committed
    na_inds = df.loc[pd.isna(df['accelerometer']), :].index.values
    df.drop(index=na_inds, inplace=True)

rchia16's avatar
rchia16 committed
    # Interpolate times to account for any empty rows
Raymond Chia's avatar
Raymond Chia committed
    imu_times = df['timestamp'].values
    df['timestamp_interp'] = imu_times
    df['timestamp_interp'] = df['timestamp_interp'].interpolate()
    imu_times = df['timestamp_interp'].values
rchia16's avatar
rchia16 committed
    # Convert to local time
Raymond Chia's avatar
Raymond Chia committed
    imu_datetimes = [start_time + timedelta(seconds=val) \
                     for val in imu_times]
    imu_s = np.array([time.timestamp() for time in imu_datetimes])
    df['sec'] = imu_s

rchia16's avatar
rchia16 committed
    # Remove any rows that are beyond 3-hours, accommodating for erroneous data
Raymond Chia's avatar
Raymond Chia committed
    time_check_thold = df['sec'].min() + 3*3600
    mask = df['sec'] > time_check_thold
    if np.any(mask):
        df = df[np.logical_not(mask)]

    return df, hdr

def load_imu_files(f_list:list):
rchia16's avatar
rchia16 committed
    """
    Appends the output for load_imu_file

    Arguments
    ---------
    f_list : list
        list of bioharness files to read

    Returns
    -------
    pandas.DataFrame, list
    """
Raymond Chia's avatar
Raymond Chia committed
    data, hdr = [], []
    tmp = []
    for f in f_list:
        tmp.append(load_imu_file(f))
    for l in tmp:
        data.append(l[0])
        hdr.append(l[1])
    data_df = pd.concat(data, axis=0)
    return data_df, hdr

Raymond Chia's avatar
Raymond Chia committed
def load_e4_file(e4_file:str):
rchia16's avatar
rchia16 committed
    """Loads BVP data from the specified zip compressed e4 file and the start
    time and sampling frequency as a dict.

    Attributes
    ----------
    e4_file : str
        .zip e4 filename to load

    Returns
    -------
    pandas.DataFrame, dict
    """
Raymond Chia's avatar
Raymond Chia committed
    zip_file = ZipFile(e4_file)
    dfs = {csv_file.filename: pd.read_csv(zip_file.open(csv_file.filename)
                                          ,header=None)
           for csv_file in zip_file.infolist()
           if csv_file.filename.endswith('.csv')}
    bvp = dfs["BVP.csv"]
rchia16's avatar
rchia16 committed
    # First row is the initial time of the session as unix time.
    # Second row is the sample rate in Hz
Raymond Chia's avatar
Raymond Chia committed
    t0 = bvp.iloc[0].values[0]
    fs = bvp.iloc[1].values[0]
    nsamples = len(bvp) - 2

    t0_datetime = datetime.utcfromtimestamp(t0)
    t0_local = datetime_from_utc_to_local(t0_datetime)
    time = [t0_local.timestamp() + ind*(1/fs) for ind in
            range(nsamples)]
    tmp = [np.nan, np.nan]
    time = tmp + time
    bvp.rename(columns={0: "bvp"}, inplace=True)
Raymond Chia's avatar
Raymond Chia committed
    bvp['sec'] = np.array(time)

    head = bvp.iloc[[0, 1]]
    bvp.drop(inplace=True, index=[0, 1])

    hdr = {'start_time': head.iloc[0,0],
           'fs': head.iloc[0,1]}
Raymond Chia's avatar
Raymond Chia committed

    return bvp, hdr

def load_e4_files(f_list:list):
rchia16's avatar
rchia16 committed
    """
    Appends the output for load_e4_file

    Arguments
    ---------
    f_list : list
        list of e4 files to read

    Returns
    -------
    pandas.DataFrame, list
    """
    tmp = []
    data = []
    hdr = []
    for f in f_list:
        tmp.append(load_e4_file(f))
    for d, h in tmp:
        data.append(d)
        hdr.append(h)
    data_df = pd.concat(data, axis=0)
    return data_df, hdr
Raymond Chia's avatar
Raymond Chia committed

Raymond Chia's avatar
Raymond Chia committed
# Synchronising data
def sync_to_ref(df0, df1):
rchia16's avatar
rchia16 committed
    """
    Synchronises both DataFrames

    Arguments
    ---------
    df0 : pandas.DataFrame
        data to sync
    df1 : pandas.DataFrame
        data to sync

    Returns
    -------
    pandas.DataFrame, pandas.DataFrame
    """
Raymond Chia's avatar
Raymond Chia committed
    dsync0 = DataSynchronizer()
    dsync1 = DataSynchronizer()

    time0 = df0['sec'].values
    time1 = df1['sec'].values

    t0 = max((time0[0], time1[0]))
    t1 = min((time0[-1], time1[-1]))
    dsync0.set_bounds(time0, t0, t1)
    dsync1.set_bounds(time1, t0, t1)

    return dsync0.sync_df(df0), dsync1.sync_df(df1)

Raymond Chia's avatar
Raymond Chia committed
# Task for windowing dataframe
def df_win_task(w_inds, df, i, cols):
    """
    Performs signal processing on IMU. If BVP values exist in the column
    namespace, BVP signal processing is performed. Extract median BR from the
    summary bioharness file and max frequency of the PSS wave. 
    Add index value for each window for tsfresh processing.
Raymond Chia's avatar
Raymond Chia committed

Raymond Chia's avatar
Raymond Chia committed
    Attributes
    ----------
    w_inds : numpy.ndarray
        specifies the window indexes for the df
    df : pandas.DataFrame
        DataFrame to extract window from
    i : int
        window index
    cols : list
        columns to perform data processing functions across
Raymond Chia's avatar
Raymond Chia committed

Raymond Chia's avatar
Raymond Chia committed
    Returns
    -------
    pandas.DataFrame, pandas.DataFrame
    """
Raymond Chia's avatar
Raymond Chia committed
    time = df['sec'].values
    if w_inds[-1] == 0: return
    w_df = df.iloc[w_inds]
    t0, t1 = time[w_inds][0], time[w_inds][-1]
    diff = time[w_inds[1:]] - time[w_inds[0:-1]]

Raymond Chia's avatar
Raymond Chia committed
    fs_est = 1/np.median(diff)
Raymond Chia's avatar
Raymond Chia committed
    if fs_est > 70 and 'acc_x' in cols: fs = IMU_FS
    elif fs_est < 70 and 'bvp' in cols: fs = PPG_FS
Raymond Chia's avatar
Raymond Chia committed

    # Reject window if there is a time difference between rows greater than 20s
Raymond Chia's avatar
Raymond Chia committed
    mask = np.abs(diff)>20
    diff_chk = np.any(mask)
    if diff_chk:
        return

    filt_out = []
    for col in cols:
        data = w_df[col].values
        # DSP
Raymond Chia's avatar
Raymond Chia committed
        if sum(np.abs(data)) > 0:
            sd_data = (data - np.mean(data, axis=0))/np.std(data, axis=0)
        else:
            sd_data = data.copy()
Raymond Chia's avatar
Raymond Chia committed
        # ys = cubic_interp(sd_data, BR_FS, FS_RESAMPLE)
        if col != 'bvp':
            filt_out.append(imu_signal_processing(sd_data, fs))
        else:
            bvp_filt = bvp_signal_processing(sd_data, fs)
            filt_out.append(bvp_filt)
    
    x_out = pd.DataFrame(np.array(filt_out).T, columns=cols)

    sm_out = w_df['BR'].values
    ps_out = w_df['PSS'].values

    x_vec_time = np.median(time[w_inds])

    fs = 1/np.mean(diff)
Raymond Chia's avatar
Raymond Chia committed
    ps_out = pressure_signal_processing(ps_out, fs=fs)
Raymond Chia's avatar
Raymond Chia committed
    ps_freq = int(get_max_frequency(ps_out, fs=fs))
    y_tmp = np.array([x_vec_time, np.nanmedian(sm_out), ps_freq])

    x_out['sec'] = x_vec_time
    x_out['id'] = i
    y_out = pd.DataFrame([y_tmp], columns=['sec', 'br', 'pss'])

    if 'cpm' in w_df.columns.tolist():
        cpm_out = int(np.median(w_df['cpm'].values))
        y_out['cpm'] = cpm_out
    if 'bvp' in cols:
        xf, yf = do_pad_fft(bvp_filt, fs=fs)
        bv_freq = int(xf[yf.argmax()]*60)
Raymond Chia's avatar
Raymond Chia committed
        # Uncomment if you wish to extract BVP estimated HR.
        # y_out['hr_est'] = bv_freq
Raymond Chia's avatar
Raymond Chia committed

    return x_out, y_out

Raymond Chia's avatar
Raymond Chia committed
def get_max_frequency(data, fs=IMU_FS, fr=0.02):
    """
    Returns the maximum frequency after padded fft
    
    Attributes
    ----------
    data : numpy.ndarray
        signal to extract max frequency
    fs : int
        signal sampling frequency (default = IMU_FS)
    fr : float
        frequency resolution to set pad length (default = 0.02)
Raymond Chia's avatar
Raymond Chia committed

Raymond Chia's avatar
Raymond Chia committed
    Returns
    -------
    float
    """
    xf, yf = do_pad_fft(data, fs=fs, fr=fr)
Raymond Chia's avatar
Raymond Chia committed
    max_freq = xf[yf.argmax()]*60
    return max_freq

def convert_to_float(df):
Raymond Chia's avatar
Raymond Chia committed
    """
    Converts 'sec', 'pss', 'br', and 'subject' columns to float

    Attributes
    ----------
    df : pandas.DataFrame
    """
Raymond Chia's avatar
Raymond Chia committed
    cols = df.columns.values
    if 'sec' in cols:
        df['sec'] = df['sec'].astype(float)
    if 'pss' in cols:
        df['pss'] = df['pss'].astype(float)
    if 'br' in cols:
        df['br'] = df['br'].astype(float)
    if 'subject' in cols:
        df['subject'] = df['subject'].astype(float)

Raymond Chia's avatar
Raymond Chia committed
def load_and_sync_xsens(subject, sens_list:list=['imu', 'bvp']):
Raymond Chia's avatar
Raymond Chia committed
    """
    Loads requested sensors from the subject folder and synchronises each to
    the beginning and end timestamps. Linearly interpolates the data and 
    timestamps to match the higher frequency data.

    Arguments
    ---------
    subject : str
        subject to extract data from (i.e. 'Pilot02', 'S02')
    sens_list : list
        a list that contains either or both 'imu' and 'bvp'
    
    Returns
    -------
    pd.DataFrame
    """
Raymond Chia's avatar
Raymond Chia committed
    assert 'imu' in sens_list or 'bvp' in sens_list, \
            f"{sens_list} is not supported, must contain"\
            "'imu', 'bvp' or 'imu, bvp'"

    pss_df, br_df, imu_df, bvp_df = None, None, None, None
    acc_data, gyr_data, bvp_data = None, None, None
Raymond Chia's avatar
Raymond Chia committed
    # load imu
Raymond Chia's avatar
Raymond Chia committed
    if 'imu' in sens_list:
        imu_list = get_file_list('imudata.gz', sbj=subject)
        imu_df_all, imu_hdr_df_all = load_imu_files(imu_list)
Raymond Chia's avatar
Raymond Chia committed

    # load bioharness
    pss_list = get_file_list('*Breathing.csv', sbj=subject)
    if len(pss_list) == 0:
        pss_list = get_file_list('BR*.csv', sbj=subject)

Raymond Chia's avatar
Raymond Chia committed
    br_list = get_file_list('*Summary*.csv', sbj=subject)
Raymond Chia's avatar
Raymond Chia committed

    # load e4 wristband
Raymond Chia's avatar
Raymond Chia committed
    if 'bvp' in sens_list:
        e4_list = get_file_list('*.zip', sbj=subject)
        bvp_df_all, bvp_hdr = load_e4_files(e4_list)
        bvp_fs = bvp_hdr[0]['fs']
Raymond Chia's avatar
Raymond Chia committed
    xsens_list = []
    # skip the first and last x minute(s)
Raymond Chia's avatar
Raymond Chia committed
    minutes_to_skip = .5
    br_skiprows = br_skipfooter = int(minutes_to_skip*60)
    pss_skiprows = pss_skipfooter = int(minutes_to_skip*60*BR_FS)
Raymond Chia's avatar
Raymond Chia committed
    # load each bioharness file and sync the imu to it
    for pss_file, br_file in zip(pss_list, br_list):
Raymond Chia's avatar
Raymond Chia committed
        xsens_data = {}

Raymond Chia's avatar
Raymond Chia committed
        pss_df = load_bioharness_file(pss_file, skiprows=pss_skiprows,
                                      skipfooter=pss_skipfooter,
                                      engine='python')
        pss_time = pss_df['Time'].map(bioharness_datetime_to_seconds).values\
                .reshape(-1, 1)
        pss_df['sec'] = pss_time

        br_df = load_bioharness_file(br_file, skiprows=br_skiprows,
                                     skipfooter=br_skipfooter,
                                     engine='python')
        br_time = br_df['Time'].map(bioharness_datetime_to_seconds).values\
                .reshape(-1, 1)
        br_df['sec'] = br_time

        # sync
Raymond Chia's avatar
Raymond Chia committed
        if 'imu' in sens_list and 'bvp' in sens_list:
            br_df, imu_df = sync_to_ref(br_df, imu_df_all.copy())
            pss_df, _ = sync_to_ref(pss_df, imu_df_all.copy())
            bvp_df, _ = sync_to_ref(bvp_df_all.copy(), pss_df.copy())
        elif 'imu' in sens_list and not 'bvp' in sens_list:
            br_df, imu_df = sync_to_ref(br_df, imu_df_all.copy())
            pss_df, _ = sync_to_ref(pss_df, imu_df_all.copy())
        elif not 'imu' in sens_list and 'bvp' in sens_list:
            br_df, bvp_df = sync_to_ref(br_df, bvp_df_all.copy())
            pss_df, _ = sync_to_ref(pss_df, bvp_df_all.copy())
Raymond Chia's avatar
Raymond Chia committed

        # extract relevant data
Raymond Chia's avatar
Raymond Chia committed
        if 'imu' in sens_list:
            axes = ['x', 'y', 'z']
            acc_data = np.stack(imu_df['accelerometer'].values)
            gyr_data = np.stack(imu_df['gyroscope'].values)
            x_time = imu_df['sec'].values.reshape(-1, 1)

        if 'bvp' in sens_list and 'imu' in sens_list:
            bvp_data = bvp_df['bvp'].values
            bvp_data = np.interp(x_time, bvp_df['sec'].values, bvp_data)\
                    .reshape(-1, 1)
        elif 'bvp' in sens_list and not 'imu' in sens_list:
            bvp_data = bvp_df['bvp'].values
            x_time = bvp_df['sec'].values

        xsens_data['sec'] = x_time.flatten()
Raymond Chia's avatar
Raymond Chia committed

        br_col = [col for col in pss_df.columns.values if\
                  'breathing' in col.lower()][0]
        pss_data = pss_df[br_col].values
        pss_data = np.interp(x_time, pss_df['sec'].values, pss_data)\
                .reshape(-1, 1)
Raymond Chia's avatar
Raymond Chia committed
        xsens_data['PSS'] = pss_data.flatten()
Raymond Chia's avatar
Raymond Chia committed

        br_lbl = [col for col in br_df.columns.values if\
                  'br' in col.lower()][0]
        br_data = br_df['BR'].values
        br_data = np.interp(x_time, br_df['sec'].values, br_data)\
                .reshape(-1, 1)
Raymond Chia's avatar
Raymond Chia committed
        xsens_data['BR'] = br_data.flatten()
Raymond Chia's avatar
Raymond Chia committed

Raymond Chia's avatar
Raymond Chia committed
        if 'imu' in sens_list:
            for i, axis in enumerate(axes):
                xsens_data['acc_'+axis] = acc_data.T[i].flatten()
                xsens_data['gyro_'+axis] = gyr_data.T[i].flatten()

        if 'bvp' in sens_list:
            xsens_data['bvp'] = bvp_data.flatten()

        xsens_df_tmp = pd.DataFrame(xsens_data)
Raymond Chia's avatar
Raymond Chia committed
        xsens_list.append(xsens_df_tmp)

    if len(xsens_list) > 1:
        xsens_df = pd.concat(xsens_list, axis=0, ignore_index=True)
        xsens_df.reset_index(drop=True, inplace=True)
    else:
        xsens_df = xsens_list[0]

    return xsens_df

Raymond Chia's avatar
Raymond Chia committed
def load_tsfresh(xsens_df, home_dir,
Raymond Chia's avatar
Raymond Chia committed
                 window_size=12, window_shift=0.2, fs=IMU_FS,
Raymond Chia's avatar
Raymond Chia committed
                 overwrite=False, data_cols=None, prefix=None):
Raymond Chia's avatar
Raymond Chia committed
    """
    Loads the tsfresh pickle file, or generates if it does not exist for the
    given configuration

    Arguments
    ---------
    xsens_df : pandas.DataFrame
        synchronised and frequency matched DataFrame with all data and labels
    
    Returns
    -------
    pd.DataFrame
    """
Raymond Chia's avatar
Raymond Chia committed
    assert data_cols is not None, "invalid selection for data columns"
Raymond Chia's avatar
Raymond Chia committed
    # raise NotImplementedError("To be implemented")
Raymond Chia's avatar
Raymond Chia committed
    if prefix is not None:
        pkl_fname = f'{prefix}__winsize_{window_size}__winshift_{window_shift}__tsfresh.pkl' 
    else:
        pkl_fname = f'winsize_{window_size}__winshift_{window_shift}__tsfresh.pkl' 

    pkl_dir = join(home_dir,
                   f'tsfresh__winsize_{window_size}__winshift_{window_shift}')
    pkl_file = join(pkl_dir, pkl_fname)
    if not exists(pkl_dir): mkdir(pkl_dir)
Raymond Chia's avatar
Raymond Chia committed
    if exists(pkl_file) and not overwrite:
        return pd.read_pickle(pkl_file)

Raymond Chia's avatar
Raymond Chia committed

    assert 'acc_x' in xsens_df.columns.tolist() and \
            'gyro_x' in xsens_df.columns.tolist() and \
            'bvp' in xsens_df.columns.tolist(), \
    "First instance must include the full required dataset. Must have both "\
            "IMU and BVP"
Raymond Chia's avatar
Raymond Chia committed
    x_df, y_df = get_df_windows(xsens_df,
Raymond Chia's avatar
Raymond Chia committed
                                df_win_task,
Raymond Chia's avatar
Raymond Chia committed
                                window_size=window_size,
                                window_shift=window_shift,
                                fs=fs,
Raymond Chia's avatar
Raymond Chia committed
                                cols=data_cols,
Raymond Chia's avatar
Raymond Chia committed
                               )
    x_features_df = extract_features(
        x_df, column_sort='sec',
        column_id='id',
        # default_fc_parameters=tsfresh_settings.MinimalFCParameters(),
    )
    x_features_df.fillna(0, inplace=True)
Raymond Chia's avatar
Raymond Chia committed
    x_features_df.reset_index(drop=True, inplace=True)
    x_features_df = x_features_df.reindex(sorted(x_features_df.columns.values),
                                          axis=1)
Raymond Chia's avatar
Raymond Chia committed

    cols = x_features_df.columns.values

    df_out = pd.concat([y_df, x_features_df], axis=1)
    df_out.to_pickle(pkl_file)
    return df_out

def get_activity_log(subject):
Raymond Chia's avatar
Raymond Chia committed
    """
    Loads and retrieves the sit and stand file

    Arguments
    ---------
    subject: str
        subject to retrieve (i.e. 'Pilot02', 'S02')
    
    Returns
    -------
    pd.DataFrame
    """
    activity_list = get_file_list('activity*.csv', sbj=subject)
    activity_dfs = [pd.read_csv(f) for f in activity_list]
    return pd.concat(activity_dfs, axis=0)

def get_respiration_log(subject):
Raymond Chia's avatar
Raymond Chia committed
    """
    Loads and retrieves the respiration calibration events, timestamps,
    inhale/exhale

    Arguments
    ---------
    subject: str
        subject to retrieve (i.e. 'Pilot02', 'S02')
    
    Returns
    -------
    pd.DataFrame
    """

    log_list = get_file_list('*.json', sbj=subject)
    log_dfs = [pd.read_json(f) for f in log_list]
    return pd.concat(log_dfs, axis=0)

Raymond Chia's avatar
Raymond Chia committed
def get_cal_data(event_df, xsens_df):
Raymond Chia's avatar
Raymond Chia committed
    """
    Loads and retrieves the respiration calibration data

    Arguments
    ---------
    event_df : pandas.DataFrame
        timestamp, inhalation, exhalation, and event data from calibration
        process
    xsens_df : pandas.DataFrame
        synchronised and frequency matched DataFrame with all data and labels
    
    Returns
    -------
    pd.DataFrame
    """

Raymond Chia's avatar
Raymond Chia committed
    fmt ="%Y-%m-%d %H.%M.%S" 
    cal_list = []
    cpms = []
    start_sec = 0
    stop_sec = 0
    for index, row in event_df.iterrows():
        event = row['eventTag']
        timestamp = row['timestamp']
        inhalePeriod = row['inhalePeriod']
        exhalePeriod = row['exhalePeriod']

        cpm = np.round( 60/(inhalePeriod + exhalePeriod) )

        sec = timestamp.to_pydatetime().timestamp()

        if event == 'Start':
            start_sec = sec
            continue
        elif event == 'Stop':
            stop_sec = sec

            dsync = DataSynchronizer()
            dsync.set_bounds(xsens_df['sec'].values, start_sec, stop_sec)

            sync_df = dsync.sync_df(xsens_df.copy())
            cal_data = {'cpm': cpm, 'data': sync_df}
            cal_list.append(cal_data)

            assert np.round(sync_df.sec.iloc[0])==np.round(start_sec), \
            "error with start sync"
            assert np.round(sync_df.sec.iloc[-1])==np.round(stop_sec), \
            "error with stop sync"

    return pd.DataFrame(cal_list)

def get_test_data(cal_df, activity_df, xsens_df, test_standing):
Raymond Chia's avatar
Raymond Chia committed
    """
    Loads and retrieves the activity timestamps from sitting and standing
    events

    Arguments
    ---------
    cal_df : pandas.DataFrame
        synchronised and frequency matched respiration calibration data
    activity_df : pandas.DataFrame
        timestamps of activity events
    xsens_df : pandas.DataFrame
        synchronised and frequency matched DataFrame with all data and labels
    test_standing : bool
        list of column str
    
    Returns
    -------
    pd.DataFrame
    """

Raymond Chia's avatar
Raymond Chia committed
    fmt = "%d/%m/%Y %H:%M:%S"
    start_time = cal_df.iloc[-1]['data'].sec.values[-1]
    data_df = xsens_df[xsens_df.sec > start_time]
    activity_start = 0
    activity_end = 0

    activity_list = []

    for index, row in activity_df.iterrows():
        sec = datetime.strptime(row['Timestamps'], fmt).timestamp()
        if not test_standing and row['Activity'] == 'standing':
            continue
        if row['Event'] == 'start':
            activity_start = sec
        elif row['Event'] == 'end':
            activity_stop = sec

            dsync = DataSynchronizer()
            dsync.set_bounds(data_df['sec'].values, activity_start,
                             activity_stop)

            sync_df = dsync.sync_df(data_df.copy())
            activity_data = {'activity': row['Activity'], 'data': sync_df}
            activity_list.append(activity_data)

    return pd.DataFrame(activity_list)

Raymond Chia's avatar
Raymond Chia committed
def dsp_win_func(w_inds, df, i, cols):
Raymond Chia's avatar
Raymond Chia committed
    """
    Runs artefact rejection, PCA, and Hernandez DSP for a window of data

    Arguments
    ---------
    w_inds : numpy.ndarray
        set of indexes for a given window
    df : pandas.DataFrame
        synchronised and frequency matched DataFrame with all data and labels
    i : int
        window index
    cols : list
        list of column str
    
    Returns
    -------
    y_hat : pandas.DataFrame
        estimated respiration rate from Hernandez method
    y_out : pandas.DataFrame
        max PSS frequency and median breathing rate from bioharness summary 
        file
    """
Raymond Chia's avatar
Raymond Chia committed
    time = df['sec'].values
    if w_inds[-1] == 0: return
    w_df = df.iloc[w_inds]
    t0, t1 = time[w_inds][0], time[w_inds][-1]
    diff = time[w_inds[1:]] - time[w_inds[0:-1]]
    mask = np.abs(diff)>20
    diff_chk = np.any(mask)
    if diff_chk:
        return

    data = w_df[cols].values

    if reject_artefact((data-np.mean(data,axis=0))/np.std(data,axis=0)):
        return

    # DSP
    pca = PCA(n_components=1, random_state=3)

    # do hernandez sp on datacols for df
    filt = hernandez_sp(data=data, fs=IMU_FS)[1]

    # pca
    pca_out = pca.fit_transform(filt)

    std = StandardScaler().fit_transform(pca_out)

    pred = get_max_frequency(std, fs=FS_RESAMPLE)

    # get pss / br estimates
    # x_time median, pss max_freq, br median
    sm_out = w_df['BR'].values
    ps_out = w_df['PSS'].values

    x_vec_time = np.median(time[w_inds])

    fs = 1/np.mean(diff)
Raymond Chia's avatar
Raymond Chia committed
    ps_out = pressure_signal_processing(ps_out, fs=fs)

Raymond Chia's avatar
Raymond Chia committed
    ps_freq = int(get_max_frequency(ps_out, fs=IMU_FS))

    y_tmp = np.array([x_vec_time, np.nanmedian(sm_out), ps_freq])

    y_hat = pd.DataFrame([ {'sec': x_vec_time, 'pred': pred} ])
    y_out = pd.DataFrame([y_tmp], columns=['sec', 'br', 'pss'])

    return y_hat, y_out

Raymond Chia's avatar
Raymond Chia committed
# save evaluation metrics in single file that handles the models for the
# subject and config
class EvalHandler():
Raymond Chia's avatar
Raymond Chia committed
    """
    Handles the evaluation metric for each subject and configuration.
    ...

    Attributes
    ----------
    y_true : numpy.ndarray
        a numpy array of the respiration rate ground truth values from the
        bioharness
    y_pred : numpy.ndarray
        a numpy array of the predicted respiration rate
    subject : str
        the subject in format Pilot01, S01 etc.
    pfh : ProjectFileHandler
        custom class detailing the directories, metafile, and configurations
    mdl_str : str
        a string to inform what model was used
    overwrite : bool
        overwrites the evaluations (default False)

    Methods
    -------
    load_eval_history()
        loads the evaluation file
    save_eval_history()
        saves the evaluation file
    update_eval_history()
        updates the evaluation file using the new entry if there is no matching
        model or configuration for the given subject
    """
Raymond Chia's avatar
Raymond Chia committed
    def __init__(self, y_true, y_pred, subject, pfh, mdl_str, overwrite=False):
        self.subject = subject
        self.config = pfh.config
        self.parent_directory = join(DATA_DIR, 'subject_specific')
        self.fset_id = pfh.fset_id
        self.mdl_str = mdl_str
        self.overwrite = overwrite

        self.evals = Evaluation(y_true, y_pred)

        entry = {'subject': self.subject,
                 'config_id': self.fset_id,
                 'mdl_str': self.mdl_str,
                }
        self.entry = {**entry, **self.config, **self.evals.get_evals()}

        self.eval_history_file = join(self.parent_directory,
                                      'eval_history.csv')
        self.eval_hist = self.load_eval_history()

    def load_eval_history(self):
        if not exists(self.eval_history_file):
            return None
        else:
            return pd.read_csv(self.eval_history_file)

    def update_eval_history(self):
        eval_hist = self.eval_hist
        if eval_hist is None:
            eval_hist = pd.DataFrame([self.entry])
        else:
            index_list = eval_hist[
                (eval_hist['subject'] == self.entry['subject']) &\
                (eval_hist['config_id'] == self.entry['config_id']) &\
Raymond Chia's avatar
Raymond Chia committed
                (eval_hist['mdl_str'] == self.entry['mdl_str']) &\
Raymond Chia's avatar
Raymond Chia committed
                (eval_hist['cpm'] == self.entry['cpm']) &\
                (eval_hist['sens_list'] == self.entry['sens_list'])\
Raymond Chia's avatar
Raymond Chia committed
            ].index.tolist()
            if len(index_list) == 0:
                print("adding new entry")
                eval_hist = eval_hist._append(self.entry, ignore_index=True)
            elif index_list is not None and self.overwrite:
                eval_hist.loc[index_list[0]] = self.entry
        self.eval_hist = eval_hist

    def save_eval_history(self):
        self.eval_hist.to_csv(self.eval_history_file, index=False)

Raymond Chia's avatar
Raymond Chia committed
# save evaluation metrics in single file that handles the models for the
# subject and config
class DSPEvalHandler():
    """
    Handles the evaluation metric for each subject and DSP sensor.
    ...

    Attributes
    ----------
    y_true : numpy.ndarray
        a numpy array of the respiration rate ground truth values from the
        bioharness
    y_pred : numpy.ndarray
        a numpy array of the predicted respiration rate
    subject : str
        the subject in format Pilot01, S01 etc.
    pfh : ProjectFileHandler
        custom class detailing the directories, metafile, and configurations
    sens_str : str
        a string to inform what sensor was used
    overwrite : bool
        overwrites the evaluations (default False)

    Methods
    -------
    load_eval_history()
        loads the evaluation file
    save_eval_history()
        saves the evaluation file
    update_eval_history()
        updates the evaluation file using the new entry if there is no matching
        model or configuration for the given subject
    """
    def __init__(self, y_true, y_pred, subject, pfh, sens_str, overwrite=False):