Newer
Older
from os import makedirs, mkdir
from os.path import join, exists
import pandas as pd
import numpy as np
import json
import ipdb
import re
import pickle
import sys
import time
import argparse
from datetime import datetime, timedelta, timezone, timedelta
import pytz
import matplotlib.pyplot as plt
from functools import partial
from collections import Counter
from multiprocessing import Pool, cpu_count
import tensorflow as tf
from sklearn.preprocessing import StandardScaler, MinMaxScaler, OneHotEncoder
from sklearn.preprocessing import PolynomialFeatures, LabelEncoder
from sklearn.model_selection import KFold, train_test_split
from sklearn.metrics import accuracy_score
from tsfresh.feature_extraction import extract_features
from tsfresh.feature_extraction import settings as tsfresh_settings
from tsfresh.utilities.string_manipulation import get_config_from_string
from modules.datapipeline import get_file_list, load_and_snip, load_data, \
load_split_data, load_harness_data
from modules.digitalsignalprocessing import vectorized_slide_win as vsw
from modules.digitalsignalprocessing import imu_signal_processing
from modules.digitalsignalprocessing import bvp_signal_processing
from modules.digitalsignalprocessing import hernandez_sp, reject_artefact
pressure_signal_processing, infer_frequency, movingaverage
from modules.utils import *
from modules.evaluations import Evaluation
from modules.datapipeline import get_windowed_data, DataSynchronizer,\
parallelize_dataframe
from modules.datapipeline import ProjectFileHandler
from models.ardregression import ARDRegressionClass
from models.knn import KNNClass
from models.svm import SVMClass
from models.lda import LDAClass
from models.svr import SVRClass
from models.logisticregression import LogisticRegressionClass
from models.linearregression import LinearRegressionClass
from models.neuralnet import FNN_HyperModel, LSTM_HyperModel, TunerClass,\
CNN1D_HyperModel
from models.ridgeclass import RidgeClass
from models.resnet import Regressor_RESNET, Classifier_RESNET
from models.xgboostclass import XGBoostClass
from pprint import PrettyPrinter
from sktime.transformations.panel.rocket import (
MiniRocket,
MiniRocketMultivariate,
MiniRocketMultivariateVariable,
)
from config import WINDOW_SIZE, WINDOW_SHIFT, IMU_FS, DATA_DIR, BR_FS\
IMU_COLS = ['acc_x', 'acc_y', 'acc_z', 'gyro_x', 'gyro_y', 'gyro_z']
"""Converts UTC datetime to specified timezone
Arguments
---------
utc_dt : datetime
input datetime to convert
tz : pytz.timezone
timezone
Returns
-------
datetime
"""
return utc_dt.replace(tzinfo=timezone.utc).astimezone(tz=tz)
"""Converts UTC datetime to local time
Arguments
---------
utc_dt : datetime
input datetime to convert
Returns
-------
datetime
"""
now_timestamp = time.time()
offset = datetime.fromtimestamp(now_timestamp) - datetime.utcfromtimestamp(now_timestamp)
return utc_datetime + offset
# Load data
def load_bioharness_file(f:str, skiprows=0, skipfooter=0, **kwargs):
"""
Load and retrieve bioharness file. Interpolates any empty time rows
Arguments
---------
f : str
filename
skiprows : int
num. of rows to skip from top
skipfooter : int
num. of rows to skip from bottom
**kwargs
Returns
-------
pandas.DataFrame
"""
fmt = "%d/%m/%Y %H:%M:%S.%f"
# Set keyword arguments for read_csv
method = partial(pd.read_csv, skipinitialspace=True,
skiprows=list(range(1, skiprows+1)),
skipfooter=skipfooter,
header=0,
**kwargs
)
df = method(f)
if 'Time' not in df.columns.values:
df['Time'] = pd.to_datetime(
df.rename(columns={'Date':'Day'})[
['Day','Month','Year']]) \
+ pd.to_timedelta(df['ms'], unit='ms')
if pd.isna(df['Time']).any():
df['Time'].interpolate(inplace=True)
df['Time'] = pd.to_datetime(df['Time'], format=fmt)
df['Time'] = df['Time'].dt.strftime(fmt)
return df
def load_bioharness_files(f_list:list, skiprows=0, skipfooter=0, **kwargs):
"""
Appends the output for load_bioharness_file
Arguments
---------
f_list : list
list of bioharness files to read
skiprows : int
num. of rows to skip from top
skipfooter : int
num. of rows to skip from bottom
**kwargs
Returns
-------
pandas.DataFrame
"""
df_list = []
for f in f_list:
df_list.append(load_bioharness_file(f))
df = pd.concat(df_list, ignore_index=True)
return df
def bioharness_datetime_to_seconds(val):
"""
Converts the bioharness datetime to seconds
Arguments
---------
val : str
bioharness time string
Returns
-------
float
"""
fmt = "%d/%m/%Y %H:%M:%S.%f"
dstr = datetime.strptime(val, fmt)
seconds = dstr.timestamp()
return seconds
def load_imu_file(imu_file:str):
"""
Load and retrieve the specified tobtii imu compressed file
Arguments
---------
imu_file : str
Tobii Glasses IMU file to read in gzip compressed format
Returns
-------
pd.DataFrame, dict
"""
hdr_file = imu_file.replace('imudata.gz', 'recording.g3')
df = pd.read_json(imu_file, lines=True, compression='gzip')
hdr = pd.read_json(hdr_file, orient='index')
hdr = hdr.to_dict().pop(0)
if df.empty: return df, hdr
data_df = pd.DataFrame(df['data'].tolist())
df = pd.concat([df.drop('data', axis=1), data_df], axis=1)
iso_tz = hdr['created']
tzinfo = pytz.timezone(hdr['timezone'])
# adjust for UTC
start_time = datetime.fromisoformat(iso_tz[:-1])
start_time = utc_to_local(start_time, tz=tzinfo).astimezone(tzinfo)
na_inds = df.loc[pd.isna(df['accelerometer']), :].index.values
df.drop(index=na_inds, inplace=True)
imu_times = df['timestamp'].values
df['timestamp_interp'] = imu_times
df['timestamp_interp'] = df['timestamp_interp'].interpolate()
imu_times = df['timestamp_interp'].values
imu_datetimes = [start_time + timedelta(seconds=val) \
for val in imu_times]
imu_s = np.array([time.timestamp() for time in imu_datetimes])
df['sec'] = imu_s
# Remove any rows that are beyond 3-hours, accommodating for erroneous data
time_check_thold = df['sec'].min() + 3*3600
mask = df['sec'] > time_check_thold
if np.any(mask):
df = df[np.logical_not(mask)]
return df, hdr
def load_imu_files(f_list:list):
"""
Appends the output for load_imu_file
Arguments
---------
f_list : list
list of bioharness files to read
Returns
-------
pandas.DataFrame, list
"""
data, hdr = [], []
tmp = []
for f in f_list:
tmp.append(load_imu_file(f))
for l in tmp:
data.append(l[0])
hdr.append(l[1])
data_df = pd.concat(data, axis=0)
return data_df, hdr
"""Loads BVP data from the specified zip compressed e4 file and the start
time and sampling frequency as a dict.
Attributes
----------
e4_file : str
.zip e4 filename to load
Returns
-------
pandas.DataFrame, dict
"""
zip_file = ZipFile(e4_file)
dfs = {csv_file.filename: pd.read_csv(zip_file.open(csv_file.filename)
,header=None)
for csv_file in zip_file.infolist()
if csv_file.filename.endswith('.csv')}
bvp = dfs["BVP.csv"]
# First row is the initial time of the session as unix time.
# Second row is the sample rate in Hz
t0 = bvp.iloc[0].values[0]
fs = bvp.iloc[1].values[0]
nsamples = len(bvp) - 2
t0_datetime = datetime.utcfromtimestamp(t0)
t0_local = datetime_from_utc_to_local(t0_datetime)
time = [t0_local.timestamp() + ind*(1/fs) for ind in
range(nsamples)]
tmp = [np.nan, np.nan]
time = tmp + time
head = bvp.iloc[[0, 1]]
bvp.drop(inplace=True, index=[0, 1])
hdr = {'start_time': head.iloc[0,0],
'fs': head.iloc[0,1]}
return bvp, hdr
def load_e4_files(f_list:list):
"""
Appends the output for load_e4_file
Arguments
---------
f_list : list
list of e4 files to read
Returns
-------
pandas.DataFrame, list
"""
tmp = []
data = []
hdr = []
for f in f_list:
tmp.append(load_e4_file(f))
for d, h in tmp:
data.append(d)
hdr.append(h)
data_df = pd.concat(data, axis=0)
return data_df, hdr
"""
Synchronises both DataFrames
Arguments
---------
df0 : pandas.DataFrame
data to sync
df1 : pandas.DataFrame
data to sync
Returns
-------
pandas.DataFrame, pandas.DataFrame
"""
dsync0 = DataSynchronizer()
dsync1 = DataSynchronizer()
time0 = df0['sec'].values
time1 = df1['sec'].values
t0 = max((time0[0], time1[0]))
t1 = min((time0[-1], time1[-1]))
dsync0.set_bounds(time0, t0, t1)
dsync1.set_bounds(time1, t0, t1)
return dsync0.sync_df(df0), dsync1.sync_df(df1)
# Task for windowing dataframe
def df_win_task(w_inds, df, i, cols):
"""
Performs signal processing on IMU. If BVP values exist in the column
namespace, BVP signal processing is performed. Extract median BR from the
summary bioharness file and max frequency of the PSS wave.
Add index value for each window for tsfresh processing.
Attributes
----------
w_inds : numpy.ndarray
specifies the window indexes for the df
df : pandas.DataFrame
DataFrame to extract window from
i : int
window index
cols : list
columns to perform data processing functions across
Returns
-------
pandas.DataFrame, pandas.DataFrame
"""
time = df['sec'].values
if w_inds[-1] == 0: return
w_df = df.iloc[w_inds]
t0, t1 = time[w_inds][0], time[w_inds][-1]
diff = time[w_inds[1:]] - time[w_inds[0:-1]]
if fs_est > 70 and 'acc_x' in cols: fs = IMU_FS
elif fs_est < 70 and 'bvp' in cols: fs = PPG_FS
# Reject window if there is a time difference between rows greater than 20s
mask = np.abs(diff)>20
diff_chk = np.any(mask)
if diff_chk:
return
filt_out = []
for col in cols:
data = w_df[col].values
# DSP
if sum(np.abs(data)) > 0:
sd_data = (data - np.mean(data, axis=0))/np.std(data, axis=0)
else:
sd_data = data.copy()
# ys = cubic_interp(sd_data, BR_FS, FS_RESAMPLE)
if col != 'bvp':
filt_out.append(imu_signal_processing(sd_data, fs))
else:
bvp_filt = bvp_signal_processing(sd_data, fs)
filt_out.append(bvp_filt)
x_out = pd.DataFrame(np.array(filt_out).T, columns=cols)
sm_out = w_df['BR'].values
ps_out = w_df['PSS'].values
x_vec_time = np.median(time[w_inds])
fs = 1/np.mean(diff)
ps_freq = int(get_max_frequency(ps_out, fs=fs))
y_tmp = np.array([x_vec_time, np.nanmedian(sm_out), ps_freq])
x_out['sec'] = x_vec_time
x_out['id'] = i
y_out = pd.DataFrame([y_tmp], columns=['sec', 'br', 'pss'])
if 'cpm' in w_df.columns.tolist():
cpm_out = int(np.median(w_df['cpm'].values))
y_out['cpm'] = cpm_out
if 'bvp' in cols:
xf, yf = do_pad_fft(bvp_filt, fs=fs)
bv_freq = int(xf[yf.argmax()]*60)
# Uncomment if you wish to extract BVP estimated HR.
# y_out['hr_est'] = bv_freq
def get_max_frequency(data, fs=IMU_FS, fr=0.02):
"""
Returns the maximum frequency after padded fft
Attributes
----------
data : numpy.ndarray
signal to extract max frequency
fs : int
signal sampling frequency (default = IMU_FS)
fr : float
frequency resolution to set pad length (default = 0.02)
Returns
-------
float
"""
xf, yf = do_pad_fft(data, fs=fs, fr=fr)
max_freq = xf[yf.argmax()]*60
return max_freq
def convert_to_float(df):
"""
Converts 'sec', 'pss', 'br', and 'subject' columns to float
Attributes
----------
df : pandas.DataFrame
"""
cols = df.columns.values
if 'sec' in cols:
df['sec'] = df['sec'].astype(float)
if 'pss' in cols:
df['pss'] = df['pss'].astype(float)
if 'br' in cols:
df['br'] = df['br'].astype(float)
if 'subject' in cols:
df['subject'] = df['subject'].astype(float)
def load_and_sync_xsens(subject, sens_list:list=['imu', 'bvp']):
"""
Loads requested sensors from the subject folder and synchronises each to
the beginning and end timestamps. Linearly interpolates the data and
timestamps to match the higher frequency data.
Arguments
---------
subject : str
subject to extract data from (i.e. 'Pilot02', 'S02')
sens_list : list
a list that contains either or both 'imu' and 'bvp'
Returns
-------
pd.DataFrame
"""
assert 'imu' in sens_list or 'bvp' in sens_list, \
f"{sens_list} is not supported, must contain"\
"'imu', 'bvp' or 'imu, bvp'"
pss_df, br_df, imu_df, bvp_df = None, None, None, None
acc_data, gyr_data, bvp_data = None, None, None
if 'imu' in sens_list:
imu_list = get_file_list('imudata.gz', sbj=subject)
imu_df_all, imu_hdr_df_all = load_imu_files(imu_list)
# load bioharness
pss_list = get_file_list('*Breathing.csv', sbj=subject)
if len(pss_list) == 0:
pss_list = get_file_list('BR*.csv', sbj=subject)
if 'bvp' in sens_list:
e4_list = get_file_list('*.zip', sbj=subject)
bvp_df_all, bvp_hdr = load_e4_files(e4_list)
bvp_fs = bvp_hdr[0]['fs']
minutes_to_skip = .5
br_skiprows = br_skipfooter = int(minutes_to_skip*60)
pss_skiprows = pss_skipfooter = int(minutes_to_skip*60*BR_FS)
# load each bioharness file and sync the imu to it
for pss_file, br_file in zip(pss_list, br_list):
pss_df = load_bioharness_file(pss_file, skiprows=pss_skiprows,
skipfooter=pss_skipfooter,
engine='python')
pss_time = pss_df['Time'].map(bioharness_datetime_to_seconds).values\
.reshape(-1, 1)
pss_df['sec'] = pss_time
br_df = load_bioharness_file(br_file, skiprows=br_skiprows,
skipfooter=br_skipfooter,
engine='python')
br_time = br_df['Time'].map(bioharness_datetime_to_seconds).values\
.reshape(-1, 1)
br_df['sec'] = br_time
# sync
if 'imu' in sens_list and 'bvp' in sens_list:
br_df, imu_df = sync_to_ref(br_df, imu_df_all.copy())
pss_df, _ = sync_to_ref(pss_df, imu_df_all.copy())
bvp_df, _ = sync_to_ref(bvp_df_all.copy(), pss_df.copy())
elif 'imu' in sens_list and not 'bvp' in sens_list:
br_df, imu_df = sync_to_ref(br_df, imu_df_all.copy())
pss_df, _ = sync_to_ref(pss_df, imu_df_all.copy())
elif not 'imu' in sens_list and 'bvp' in sens_list:
br_df, bvp_df = sync_to_ref(br_df, bvp_df_all.copy())
pss_df, _ = sync_to_ref(pss_df, bvp_df_all.copy())
if 'imu' in sens_list:
axes = ['x', 'y', 'z']
acc_data = np.stack(imu_df['accelerometer'].values)
gyr_data = np.stack(imu_df['gyroscope'].values)
x_time = imu_df['sec'].values.reshape(-1, 1)
if 'bvp' in sens_list and 'imu' in sens_list:
bvp_data = bvp_df['bvp'].values
bvp_data = np.interp(x_time, bvp_df['sec'].values, bvp_data)\
.reshape(-1, 1)
elif 'bvp' in sens_list and not 'imu' in sens_list:
bvp_data = bvp_df['bvp'].values
x_time = bvp_df['sec'].values
xsens_data['sec'] = x_time.flatten()
br_col = [col for col in pss_df.columns.values if\
'breathing' in col.lower()][0]
pss_data = pss_df[br_col].values
pss_data = np.interp(x_time, pss_df['sec'].values, pss_data)\
.reshape(-1, 1)
br_lbl = [col for col in br_df.columns.values if\
'br' in col.lower()][0]
br_data = br_df['BR'].values
br_data = np.interp(x_time, br_df['sec'].values, br_data)\
.reshape(-1, 1)
if 'imu' in sens_list:
for i, axis in enumerate(axes):
xsens_data['acc_'+axis] = acc_data.T[i].flatten()
xsens_data['gyro_'+axis] = gyr_data.T[i].flatten()
if 'bvp' in sens_list:
xsens_data['bvp'] = bvp_data.flatten()
xsens_df_tmp = pd.DataFrame(xsens_data)
xsens_list.append(xsens_df_tmp)
if len(xsens_list) > 1:
xsens_df = pd.concat(xsens_list, axis=0, ignore_index=True)
xsens_df.reset_index(drop=True, inplace=True)
else:
xsens_df = xsens_list[0]
return xsens_df
"""
Loads the tsfresh pickle file, or generates if it does not exist for the
given configuration
Arguments
---------
xsens_df : pandas.DataFrame
synchronised and frequency matched DataFrame with all data and labels
Returns
-------
pd.DataFrame
"""
assert data_cols is not None, "invalid selection for data columns"
if prefix is not None:
pkl_fname = f'{prefix}__winsize_{window_size}__winshift_{window_shift}__tsfresh.pkl'
else:
pkl_fname = f'winsize_{window_size}__winshift_{window_shift}__tsfresh.pkl'
pkl_dir = join(home_dir,
f'tsfresh__winsize_{window_size}__winshift_{window_shift}')
pkl_file = join(pkl_dir, pkl_fname)
if not exists(pkl_dir): mkdir(pkl_dir)
if exists(pkl_file) and not overwrite:
return pd.read_pickle(pkl_file)
assert 'acc_x' in xsens_df.columns.tolist() and \
'gyro_x' in xsens_df.columns.tolist() and \
'bvp' in xsens_df.columns.tolist(), \
"First instance must include the full required dataset. Must have both "\
"IMU and BVP"
window_size=window_size,
window_shift=window_shift,
fs=fs,
)
x_features_df = extract_features(
x_df, column_sort='sec',
column_id='id',
# default_fc_parameters=tsfresh_settings.MinimalFCParameters(),
)
x_features_df.fillna(0, inplace=True)
x_features_df.reset_index(drop=True, inplace=True)
x_features_df = x_features_df.reindex(sorted(x_features_df.columns.values),
axis=1)
cols = x_features_df.columns.values
df_out = pd.concat([y_df, x_features_df], axis=1)
df_out.to_pickle(pkl_file)
return df_out
"""
Loads and retrieves the sit and stand file
Arguments
---------
subject: str
subject to retrieve (i.e. 'Pilot02', 'S02')
Returns
-------
pd.DataFrame
"""
activity_list = get_file_list('activity*.csv', sbj=subject)
activity_dfs = [pd.read_csv(f) for f in activity_list]
return pd.concat(activity_dfs, axis=0)
def get_respiration_log(subject):
"""
Loads and retrieves the respiration calibration events, timestamps,
inhale/exhale
Arguments
---------
subject: str
subject to retrieve (i.e. 'Pilot02', 'S02')
Returns
-------
pd.DataFrame
"""
log_list = get_file_list('*.json', sbj=subject)
log_dfs = [pd.read_json(f) for f in log_list]
return pd.concat(log_dfs, axis=0)
"""
Loads and retrieves the respiration calibration data
Arguments
---------
event_df : pandas.DataFrame
timestamp, inhalation, exhalation, and event data from calibration
process
xsens_df : pandas.DataFrame
synchronised and frequency matched DataFrame with all data and labels
Returns
-------
pd.DataFrame
"""
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
fmt ="%Y-%m-%d %H.%M.%S"
cal_list = []
cpms = []
start_sec = 0
stop_sec = 0
for index, row in event_df.iterrows():
event = row['eventTag']
timestamp = row['timestamp']
inhalePeriod = row['inhalePeriod']
exhalePeriod = row['exhalePeriod']
cpm = np.round( 60/(inhalePeriod + exhalePeriod) )
sec = timestamp.to_pydatetime().timestamp()
if event == 'Start':
start_sec = sec
continue
elif event == 'Stop':
stop_sec = sec
dsync = DataSynchronizer()
dsync.set_bounds(xsens_df['sec'].values, start_sec, stop_sec)
sync_df = dsync.sync_df(xsens_df.copy())
cal_data = {'cpm': cpm, 'data': sync_df}
cal_list.append(cal_data)
assert np.round(sync_df.sec.iloc[0])==np.round(start_sec), \
"error with start sync"
assert np.round(sync_df.sec.iloc[-1])==np.round(stop_sec), \
"error with stop sync"
return pd.DataFrame(cal_list)
def get_test_data(cal_df, activity_df, xsens_df, test_standing):
"""
Loads and retrieves the activity timestamps from sitting and standing
events
Arguments
---------
cal_df : pandas.DataFrame
synchronised and frequency matched respiration calibration data
activity_df : pandas.DataFrame
timestamps of activity events
xsens_df : pandas.DataFrame
synchronised and frequency matched DataFrame with all data and labels
test_standing : bool
list of column str
Returns
-------
pd.DataFrame
"""
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
fmt = "%d/%m/%Y %H:%M:%S"
start_time = cal_df.iloc[-1]['data'].sec.values[-1]
data_df = xsens_df[xsens_df.sec > start_time]
activity_start = 0
activity_end = 0
activity_list = []
for index, row in activity_df.iterrows():
sec = datetime.strptime(row['Timestamps'], fmt).timestamp()
if not test_standing and row['Activity'] == 'standing':
continue
if row['Event'] == 'start':
activity_start = sec
elif row['Event'] == 'end':
activity_stop = sec
dsync = DataSynchronizer()
dsync.set_bounds(data_df['sec'].values, activity_start,
activity_stop)
sync_df = dsync.sync_df(data_df.copy())
activity_data = {'activity': row['Activity'], 'data': sync_df}
activity_list.append(activity_data)
return pd.DataFrame(activity_list)
"""
Runs artefact rejection, PCA, and Hernandez DSP for a window of data
Arguments
---------
w_inds : numpy.ndarray
set of indexes for a given window
df : pandas.DataFrame
synchronised and frequency matched DataFrame with all data and labels
i : int
window index
cols : list
list of column str
Returns
-------
y_hat : pandas.DataFrame
estimated respiration rate from Hernandez method
y_out : pandas.DataFrame
max PSS frequency and median breathing rate from bioharness summary
file
"""
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
time = df['sec'].values
if w_inds[-1] == 0: return
w_df = df.iloc[w_inds]
t0, t1 = time[w_inds][0], time[w_inds][-1]
diff = time[w_inds[1:]] - time[w_inds[0:-1]]
mask = np.abs(diff)>20
diff_chk = np.any(mask)
if diff_chk:
return
data = w_df[cols].values
if reject_artefact((data-np.mean(data,axis=0))/np.std(data,axis=0)):
return
# DSP
pca = PCA(n_components=1, random_state=3)
# do hernandez sp on datacols for df
filt = hernandez_sp(data=data, fs=IMU_FS)[1]
# pca
pca_out = pca.fit_transform(filt)
std = StandardScaler().fit_transform(pca_out)
pred = get_max_frequency(std, fs=FS_RESAMPLE)
# get pss / br estimates
# x_time median, pss max_freq, br median
sm_out = w_df['BR'].values
ps_out = w_df['PSS'].values
x_vec_time = np.median(time[w_inds])
fs = 1/np.mean(diff)
ps_freq = int(get_max_frequency(ps_out, fs=IMU_FS))
y_tmp = np.array([x_vec_time, np.nanmedian(sm_out), ps_freq])
y_hat = pd.DataFrame([ {'sec': x_vec_time, 'pred': pred} ])
y_out = pd.DataFrame([y_tmp], columns=['sec', 'br', 'pss'])
return y_hat, y_out
# save evaluation metrics in single file that handles the models for the
# subject and config
class EvalHandler():
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
"""
Handles the evaluation metric for each subject and configuration.
...
Attributes
----------
y_true : numpy.ndarray
a numpy array of the respiration rate ground truth values from the
bioharness
y_pred : numpy.ndarray
a numpy array of the predicted respiration rate
subject : str
the subject in format Pilot01, S01 etc.
pfh : ProjectFileHandler
custom class detailing the directories, metafile, and configurations
mdl_str : str
a string to inform what model was used
overwrite : bool
overwrites the evaluations (default False)
Methods
-------
load_eval_history()
loads the evaluation file
save_eval_history()
saves the evaluation file
update_eval_history()
updates the evaluation file using the new entry if there is no matching
model or configuration for the given subject
"""
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
def __init__(self, y_true, y_pred, subject, pfh, mdl_str, overwrite=False):
self.subject = subject
self.config = pfh.config
self.parent_directory = join(DATA_DIR, 'subject_specific')
self.fset_id = pfh.fset_id
self.mdl_str = mdl_str
self.overwrite = overwrite
self.evals = Evaluation(y_true, y_pred)
entry = {'subject': self.subject,
'config_id': self.fset_id,
'mdl_str': self.mdl_str,
}
self.entry = {**entry, **self.config, **self.evals.get_evals()}
self.eval_history_file = join(self.parent_directory,
'eval_history.csv')
self.eval_hist = self.load_eval_history()
def load_eval_history(self):
if not exists(self.eval_history_file):
return None
else:
return pd.read_csv(self.eval_history_file)
def update_eval_history(self):
eval_hist = self.eval_hist
if eval_hist is None:
eval_hist = pd.DataFrame([self.entry])
else:
index_list = eval_hist[
(eval_hist['subject'] == self.entry['subject']) &\
(eval_hist['config_id'] == self.entry['config_id']) &\
(eval_hist['cpm'] == self.entry['cpm']) &\
(eval_hist['sens_list'] == self.entry['sens_list'])\
].index.tolist()
if len(index_list) == 0:
print("adding new entry")
eval_hist = eval_hist._append(self.entry, ignore_index=True)
elif index_list is not None and self.overwrite:
eval_hist.loc[index_list[0]] = self.entry
self.eval_hist = eval_hist
def save_eval_history(self):
self.eval_hist.to_csv(self.eval_history_file, index=False)
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# save evaluation metrics in single file that handles the models for the
# subject and config
class DSPEvalHandler():
"""
Handles the evaluation metric for each subject and DSP sensor.
...
Attributes
----------
y_true : numpy.ndarray
a numpy array of the respiration rate ground truth values from the
bioharness
y_pred : numpy.ndarray
a numpy array of the predicted respiration rate
subject : str
the subject in format Pilot01, S01 etc.
pfh : ProjectFileHandler
custom class detailing the directories, metafile, and configurations
sens_str : str
a string to inform what sensor was used
overwrite : bool
overwrites the evaluations (default False)
Methods
-------
load_eval_history()
loads the evaluation file
save_eval_history()
saves the evaluation file
update_eval_history()
updates the evaluation file using the new entry if there is no matching
model or configuration for the given subject
"""
def __init__(self, y_true, y_pred, subject, pfh, sens_str, overwrite=False):