Newer
Older
from os import makedirs, mkdir
from os.path import join, exists
import pandas as pd
import numpy as np
import json
import ipdb
import re
import pickle
import sys
import time
import argparse
from datetime import datetime, timedelta, timezone, timedelta
import pytz
import matplotlib.pyplot as plt
from functools import partial
from collections import Counter
from multiprocessing import Pool, cpu_count
import tensorflow as tf
from sklearn.preprocessing import StandardScaler, MinMaxScaler, OneHotEncoder
from sklearn.preprocessing import PolynomialFeatures, LabelEncoder
from sklearn.model_selection import KFold, train_test_split
from sklearn.metrics import accuracy_score
from tsfresh.feature_extraction import extract_features
from tsfresh.feature_extraction import settings as tsfresh_settings
from tsfresh.utilities.string_manipulation import get_config_from_string
from modules.datapipeline import get_file_list, load_and_snip, load_data, \
load_split_data, load_harness_data
from modules.digitalsignalprocessing import vectorized_slide_win as vsw
from modules.digitalsignalprocessing import imu_signal_processing
from modules.digitalsignalprocessing import bvp_signal_processing
from modules.digitalsignalprocessing import hernandez_sp, reject_artefact
from modules.digitalsignalprocessing import do_pad_fft,\
pressure_signal_processing, infer_frequency
from modules.utils import *
from modules.evaluations import Evaluation
from modules.datapipeline import get_windowed_data, DataSynchronizer,\
parallelize_dataframe
from modules.datapipeline import ProjectFileHandler
from models.ardregression import ARDRegressionClass
from models.knn import KNNClass
from models.svm import SVMClass
from models.lda import LDAClass
from models.svr import SVRClass
from models.logisticregression import LogisticRegressionClass
from models.linearregression import LinearRegressionClass
from models.neuralnet import FNN_HyperModel, LSTM_HyperModel, TunerClass,\
CNN1D_HyperModel
from models.ridgeclass import RidgeClass
from models.resnet import Regressor_RESNET, Classifier_RESNET
from models.xgboostclass import XGBoostClass
from pprint import PrettyPrinter
from sktime.transformations.panel.rocket import (
MiniRocket,
MiniRocketMultivariate,
MiniRocketMultivariateVariable,
)
from config import WINDOW_SIZE, WINDOW_SHIFT, IMU_FS, DATA_DIR, BR_FS\
IMU_COLS = ['acc_x', 'acc_y', 'acc_z', 'gyro_x', 'gyro_y', 'gyro_z']
def utc_to_local(utc_dt, tz=None):
return utc_dt.replace(tzinfo=timezone.utc).astimezone(tz=tz)
def datetime_from_utc_to_local(utc_datetime):
now_timestamp = time.time()
offset = datetime.fromtimestamp(now_timestamp) - datetime.utcfromtimestamp(now_timestamp)
return utc_datetime + offset
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
# Load data
def load_bioharness_file(f:str, skiprows=0, skipfooter=0, **kwargs):
df_list = []
method = partial(pd.read_csv, skipinitialspace=True,
skiprows=list(range(1, skiprows+1)),
skipfooter=skipfooter,
header=0,
**kwargs
)
df = method(f)
if 'Time' not in df.columns.values:
df['Time'] = pd.to_datetime(
df.rename(columns={'Date':'Day'})[
['Day','Month','Year']]) \
+ pd.to_timedelta(df['ms'], unit='ms')
if pd.isna(df['Time']).any():
df['Time'].interpolate(inplace=True)
df['Time'] = pd.to_datetime(df['Time'], format="%d/%m/%Y %H:%M:%S.%f")
df['Time'] = df['Time'].dt.strftime("%d/%m/%Y %H:%M:%S.%f")
return df
def load_bioharness_files(f_list:list, skiprows=0, skipfooter=0, **kwargs):
df_list = []
method = partial(pd.read_csv, skipinitialspace=True,
skiprows=list(range(1, skiprows+1)),
skipfooter=skipfooter,
header=0, **kwargs)
for f in f_list:
df_list.append(load_bioharness_file(f))
df = pd.concat(df_list, ignore_index=True)
return df
def bioharness_datetime_to_seconds(val):
fmt = "%d/%m/%Y %H:%M:%S.%f"
dstr = datetime.strptime(val, fmt)
seconds = dstr.timestamp()
return seconds
def load_imu_file(imu_file:str):
hdr_file = imu_file.replace('imudata.gz', 'recording.g3')
df = pd.read_json(imu_file, lines=True, compression='gzip')
hdr = pd.read_json(hdr_file, orient='index')
hdr = hdr.to_dict().pop(0)
if df.empty: return df, hdr
data_df = pd.DataFrame(df['data'].tolist())
df = pd.concat([df.drop('data', axis=1), data_df], axis=1)
iso_tz = hdr['created']
tzinfo = pytz.timezone(hdr['timezone'])
# adjust for UTC
start_time = datetime.fromisoformat(iso_tz[:-1])
start_time = utc_to_local(start_time, tz=tzinfo).astimezone(tzinfo)
na_inds = df.loc[pd.isna(df['accelerometer']), :].index.values
df.drop(index=na_inds, inplace=True)
imu_times = df['timestamp'].values
df['timestamp_interp'] = imu_times
df['timestamp_interp'] = df['timestamp_interp'].interpolate()
imu_times = df['timestamp_interp'].values
imu_datetimes = [start_time + timedelta(seconds=val) \
for val in imu_times]
imu_s = np.array([time.timestamp() for time in imu_datetimes])
df['sec'] = imu_s
time_check_thold = df['sec'].min() + 3*3600
mask = df['sec'] > time_check_thold
if np.any(mask):
df = df[np.logical_not(mask)]
return df, hdr
def load_imu_files(f_list:list):
data, hdr = [], []
tmp = []
for f in f_list:
tmp.append(load_imu_file(f))
for l in tmp:
data.append(l[0])
hdr.append(l[1])
data_df = pd.concat(data, axis=0)
return data_df, hdr
def load_e4_file(e4_file:str):
''' First row is the initial time of the session as unix time.
Second row is the sample rate in Hz'''
zip_file = ZipFile(e4_file)
dfs = {csv_file.filename: pd.read_csv(zip_file.open(csv_file.filename)
,header=None)
for csv_file in zip_file.infolist()
if csv_file.filename.endswith('.csv')}
bvp = dfs["BVP.csv"]
t0 = bvp.iloc[0].values[0]
fs = bvp.iloc[1].values[0]
nsamples = len(bvp) - 2
t0_datetime = datetime.utcfromtimestamp(t0)
t0_local = datetime_from_utc_to_local(t0_datetime)
time = [t0_local.timestamp() + ind*(1/fs) for ind in
range(nsamples)]
tmp = [np.nan, np.nan]
time = tmp + time
head = bvp.iloc[[0, 1]]
bvp.drop(inplace=True, index=[0, 1])
hdr = {'start_time': head.iloc[0,0],
'fs': head.iloc[0,1]}
return bvp, hdr
def load_e4_files(f_list:list):
tmp = []
data = []
hdr = []
for f in f_list:
tmp.append(load_e4_file(f))
for d, h in tmp:
data.append(d)
hdr.append(h)
data_df = pd.concat(data, axis=0)
return data_df, hdr
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
# Synchronising data
def sync_to_ref(df0, df1):
dsync0 = DataSynchronizer()
dsync1 = DataSynchronizer()
time0 = df0['sec'].values
time1 = df1['sec'].values
t0 = max((time0[0], time1[0]))
t1 = min((time0[-1], time1[-1]))
dsync0.set_bounds(time0, t0, t1)
dsync1.set_bounds(time1, t0, t1)
return dsync0.sync_df(df0), dsync1.sync_df(df1)
def pss_br_calculations(win, pss_df=None, br_df=None):
n_out = 5
if win[-1] == 0: return [None]*n_out
dsync = DataSynchronizer()
pss_fs = BR_FS
pss_col = [col for col in pss_df.columns.values if\
'breathing' in col.lower()][0]
pss_ms = pss_df['ms'].values
br_ms = br_df['ms'].values
t0, t1 = pss_ms[win][0], pss_ms[win][-1]
diff = pss_ms[win][1:] - pss_ms[win][:-1]
mask = np.abs(diff/1e3) > 60
diff_chk = np.any(mask)
if diff_chk: return [None]*n_out
# Get pressure estimate for window
pss_win = pss_df.iloc[win]
pss_data = pss_win[pss_col]
pss_filt = pressure_signal_processing(pss_data, fs=pss_fs)
xf, yf = do_pad_fft(pss_filt, fs=pss_fs)
pss_est = xf[yf.argmax()]*60
# Sync and get summary br output
dsync.set_bounds(br_ms, t0, t1)
br_win = dsync.sync_df(br_df)
br_out = np.median(br_win['BR'].values)
# Get subject and condition
sbj_out = pss_win['subject'].values[0]
time_out = np.median(pss_win['sec'].values)
return time_out, pss_est, br_out, sbj_out, cond_out
def get_pss_br_estimates(pss_df, br_df, window_size=12, window_shift=1):
pss_fs = BR_FS
# pss_col = [col for col in pss_df.columns.values if\
# 'breathing' in col.lower()][0]
pss_ms = pss_df['sec'].values
br_ms = br_df['sec'].values
inds = np.arange(0, len(pss_ms))
vsw_out = vsw(inds, len(inds), sub_window_size=int(window_size*pss_fs),
stride_size=int(window_shift*pss_fs))
# dsync = DataSynchronizer()
pss_est, br_out = [], []
cond_out, sbj_out = [], []
func = partial(pss_br_calculations, pss_df=pss_df, br_df=br_df)
# for i, win in enumerate(vsw_out):
# tmp = func(win)
with Pool(cpu_count()) as p:
tmp = p.map(func, vsw_out)
time_out, pss_est, br_out, sbj_out, cond_out = zip(*tmp)
time_array = np.array(time_out)
pss_est_array = np.array(pss_est)
br_out_array = np.array(br_out)
sbj_out_array = np.array(sbj_out)
cond_out_array = np.array(cond_out)
df = pd.DataFrame(
np.array(
[time_array, sbj_out_array, cond_out_array,
pss_est_array, br_out_array]
).T,
columns=['ms', 'subject', 'condition', 'pss', 'br'])
df.dropna(inplace=True)
return df
# Multiprocessing task for windowing dataframe
def imu_df_win_task(w_inds, df, i, cols):
time = df['sec'].values
if w_inds[-1] == 0: return
w_df = df.iloc[w_inds]
t0, t1 = time[w_inds][0], time[w_inds][-1]
diff = time[w_inds[1:]] - time[w_inds[0:-1]]
mask = np.abs(diff)>20
diff_chk = np.any(mask)
if diff_chk:
return
# sbj = w_df['subject'].values.astype(int)
# sbj_mask = np.any((sbj[1:] - sbj[:-1])>0)
# if sbj_mask:
# return
if cols is None:
data = w_df[cols].values
# DSP
sd_data = (data - np.mean(data, axis=0))/np.std(data, axis=0)
# ys = cubic_interp(sd_data, BR_FS, FS_RESAMPLE)
filt_data = imu_signal_processing(sd_data, IMU_FS)
x_out = pd.DataFrame(filt_data,
sm_out = w_df['BR'].values
ps_out = w_df['PSS'].values
x_vec_time = np.median(time[w_inds])
fs = 1/np.mean(diff)
ps_freq = int(get_max_frequency(ps_out, fs=fs))
y_tmp = np.array([x_vec_time, np.nanmedian(sm_out), ps_freq])
x_out['sec'] = x_vec_time
x_out['id'] = i
y_out = pd.DataFrame([y_tmp], columns=['sec', 'br', 'pss'])
return x_out, y_out
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
def bvp_df_win_task(w_inds, df, i, cols):
time = df['sec'].values
fs = PPG_FS
if w_inds[-1] == 0: return
w_df = df.iloc[w_inds]
t0, t1 = time[w_inds][0], time[w_inds][-1]
diff = time[w_inds[1:]] - time[w_inds[0:-1]]
mask = np.abs(diff)>20
diff_chk = np.any(mask)
if diff_chk:
return
# sbj = w_df['subject'].values.astype(int)
# sbj_mask = np.any((sbj[1:] - sbj[:-1])>0)
# if sbj_mask:
# return
if cols is None:
cols = ['bvp']
data = w_df[cols].values
# DSP
sd_data = (data - np.mean(data, axis=0))/np.std(data, axis=0)
filt_data = bvp_signal_processing(sd_data.copy(), fs)
x_out = pd.DataFrame(filt_data,
columns=cols)
sm_out = w_df['BR'].values
ps_out = w_df['PSS'].values
x_vec_time = np.median(time[w_inds])
ps_freq = int(get_max_frequency(ps_out, fs=fs))
y_tmp = np.array([x_vec_time, np.nanmedian(sm_out), ps_freq])
x_out['sec'] = x_vec_time
x_out['id'] = i
y_out = pd.DataFrame([y_tmp], columns=['sec', 'br', 'pss'])
return x_out, y_out
def df_win_task(w_inds, df, i, cols):
time = df['sec'].values
if w_inds[-1] == 0: return
w_df = df.iloc[w_inds]
t0, t1 = time[w_inds][0], time[w_inds][-1]
diff = time[w_inds[1:]] - time[w_inds[0:-1]]
fs_est = 1/np.mean(diff)
if fs_est > 70 and 'acc_x' in cols: fs = IMU_FS
elif fs_est < 70 and 'bvp' in cols: fs = PPG_FS
mask = np.abs(diff)>20
diff_chk = np.any(mask)
if diff_chk:
return
filt_out = []
for col in cols:
data = w_df[col].values
# DSP
sd_data = (data - np.mean(data, axis=0))/np.std(data, axis=0)
# ys = cubic_interp(sd_data, BR_FS, FS_RESAMPLE)
if col != 'bvp':
filt_out.append(imu_signal_processing(sd_data, fs))
else:
bvp_filt = bvp_signal_processing(sd_data, fs)
filt_out.append(bvp_filt)
x_out = pd.DataFrame(np.array(filt_out).T, columns=cols)
sm_out = w_df['BR'].values
ps_out = w_df['PSS'].values
x_vec_time = np.median(time[w_inds])
fs = 1/np.mean(diff)
ps_freq = int(get_max_frequency(ps_out, fs=fs))
y_tmp = np.array([x_vec_time, np.nanmedian(sm_out), ps_freq])
x_out['sec'] = x_vec_time
x_out['id'] = i
y_out = pd.DataFrame([y_tmp], columns=['sec', 'br', 'pss'])
if 'cpm' in w_df.columns.tolist():
cpm_out = int(np.median(w_df['cpm'].values))
y_out['cpm'] = cpm_out
if 'bvp' in cols:
xf, yf = do_pad_fft(bvp_filt, fs=fs)
bv_freq = int(xf[yf.argmax()]*60)
y_out['bvp_est'] = bv_freq
return x_out, y_out
def get_max_frequency(data, fs=IMU_FS):
data = pressure_signal_processing(data, fs=fs)
xf, yf = do_pad_fft(data, fs=fs)
max_freq = xf[yf.argmax()]*60
return max_freq
def convert_to_float(df):
cols = df.columns.values
if 'sec' in cols:
df['sec'] = df['sec'].astype(float)
if 'pss' in cols:
df['pss'] = df['pss'].astype(float)
if 'br' in cols:
df['br'] = df['br'].astype(float)
if 'subject' in cols:
df['subject'] = df['subject'].astype(float)
def load_and_sync_xsens(subject, sens_list:list=['imu', 'bvp']):
assert 'imu' in sens_list or 'bvp' in sens_list, \
f"{sens_list} is not supported, must contain"\
"'imu', 'bvp' or 'imu, bvp'"
pss_df, br_df, imu_df, bvp_df = None, None, None, None
acc_data, gyr_data, bvp_data = None, None, None
if 'imu' in sens_list:
imu_list = get_file_list('imudata.gz', sbj=subject)
imu_df_all, imu_hdr_df_all = load_imu_files(imu_list)
# load bioharness
pss_list = get_file_list('*Breathing.csv', sbj=subject)
if len(pss_list) == 0:
pss_list = get_file_list('BR*.csv', sbj=subject)
if 'bvp' in sens_list:
e4_list = get_file_list('*.zip', sbj=subject)
bvp_df_all, bvp_hdr = load_e4_files(e4_list)
bvp_fs = bvp_hdr[0]['fs']
minutes_to_skip = .5
br_skiprows = br_skipfooter = int(minutes_to_skip*60)
pss_skiprows = pss_skipfooter = int(minutes_to_skip*60*BR_FS)
# load each bioharness file and sync the imu to it
for pss_file, br_file in zip(pss_list, br_list):
pss_df = load_bioharness_file(pss_file, skiprows=pss_skiprows,
skipfooter=pss_skipfooter,
engine='python')
pss_time = pss_df['Time'].map(bioharness_datetime_to_seconds).values\
.reshape(-1, 1)
pss_df['sec'] = pss_time
br_df = load_bioharness_file(br_file, skiprows=br_skiprows,
skipfooter=br_skipfooter,
engine='python')
br_time = br_df['Time'].map(bioharness_datetime_to_seconds).values\
.reshape(-1, 1)
br_df['sec'] = br_time
# sync
if 'imu' in sens_list and 'bvp' in sens_list:
br_df, imu_df = sync_to_ref(br_df, imu_df_all.copy())
pss_df, _ = sync_to_ref(pss_df, imu_df_all.copy())
bvp_df, _ = sync_to_ref(bvp_df_all.copy(), pss_df.copy())
elif 'imu' in sens_list and not 'bvp' in sens_list:
br_df, imu_df = sync_to_ref(br_df, imu_df_all.copy())
pss_df, _ = sync_to_ref(pss_df, imu_df_all.copy())
elif not 'imu' in sens_list and 'bvp' in sens_list:
br_df, bvp_df = sync_to_ref(br_df, bvp_df_all.copy())
pss_df, _ = sync_to_ref(pss_df, bvp_df_all.copy())
if 'imu' in sens_list:
axes = ['x', 'y', 'z']
acc_data = np.stack(imu_df['accelerometer'].values)
gyr_data = np.stack(imu_df['gyroscope'].values)
x_time = imu_df['sec'].values.reshape(-1, 1)
if 'bvp' in sens_list and 'imu' in sens_list:
bvp_data = bvp_df['bvp'].values
bvp_data = np.interp(x_time, bvp_df['sec'].values, bvp_data)\
.reshape(-1, 1)
elif 'bvp' in sens_list and not 'imu' in sens_list:
bvp_data = bvp_df['bvp'].values
x_time = bvp_df['sec'].values
xsens_data['sec'] = x_time.flatten()
br_col = [col for col in pss_df.columns.values if\
'breathing' in col.lower()][0]
pss_data = pss_df[br_col].values
pss_data = np.interp(x_time, pss_df['sec'].values, pss_data)\
.reshape(-1, 1)
br_lbl = [col for col in br_df.columns.values if\
'br' in col.lower()][0]
br_data = br_df['BR'].values
br_data = np.interp(x_time, br_df['sec'].values, br_data)\
.reshape(-1, 1)
if 'imu' in sens_list:
for i, axis in enumerate(axes):
xsens_data['acc_'+axis] = acc_data.T[i].flatten()
xsens_data['gyro_'+axis] = gyr_data.T[i].flatten()
if 'bvp' in sens_list:
xsens_data['bvp'] = bvp_data.flatten()
xsens_df_tmp = pd.DataFrame(xsens_data)
xsens_list.append(xsens_df_tmp)
if len(xsens_list) > 1:
xsens_df = pd.concat(xsens_list, axis=0, ignore_index=True)
xsens_df.reset_index(drop=True, inplace=True)
else:
xsens_df = xsens_list[0]
return xsens_df
def load_tsfresh(xsens_df, project_dir,
sens_list:list=['imu', 'bvp'],
overwrite=False, data_cols=None):
assert data_cols is not None, "invalid selection for data columns"
pkl_file = join(project_dir, 'tsfresh.pkl')
if exists(pkl_file) and not overwrite:
return pd.read_pickle(pkl_file)
x_df, y_df = get_df_windows(xsens_df,
window_size=window_size,
window_shift=window_shift,
fs=fs,
)
x_features_df = extract_features(
x_df, column_sort='sec',
column_id='id',
# default_fc_parameters=tsfresh_settings.MinimalFCParameters(),
)
x_features_df.fillna(0, inplace=True)
cols = x_features_df.columns.values
df_out = pd.concat([y_df, x_features_df], axis=1)
df_out.to_pickle(pkl_file)
return df_out
def get_activity_log(subject):
activity_list = get_file_list('activity*.csv', sbj=subject)
activity_dfs = [pd.read_csv(f) for f in activity_list]
return pd.concat(activity_dfs, axis=0)
def get_respiration_log(subject):
log_list = get_file_list('*.json', sbj=subject)
log_dfs = [pd.read_json(f) for f in log_list]
return pd.concat(log_dfs, axis=0)
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
def get_cal_data(event_df, xsens_df):
fmt ="%Y-%m-%d %H.%M.%S"
cal_list = []
cpms = []
start_sec = 0
stop_sec = 0
for index, row in event_df.iterrows():
event = row['eventTag']
timestamp = row['timestamp']
inhalePeriod = row['inhalePeriod']
exhalePeriod = row['exhalePeriod']
cpm = np.round( 60/(inhalePeriod + exhalePeriod) )
sec = timestamp.to_pydatetime().timestamp()
if event == 'Start':
start_sec = sec
continue
elif event == 'Stop':
stop_sec = sec
dsync = DataSynchronizer()
dsync.set_bounds(xsens_df['sec'].values, start_sec, stop_sec)
sync_df = dsync.sync_df(xsens_df.copy())
cal_data = {'cpm': cpm, 'data': sync_df}
cal_list.append(cal_data)
assert np.round(sync_df.sec.iloc[0])==np.round(start_sec), \
"error with start sync"
assert np.round(sync_df.sec.iloc[-1])==np.round(stop_sec), \
"error with stop sync"
return pd.DataFrame(cal_list)
def get_test_data(cal_df, activity_df, xsens_df, test_standing):
fmt = "%d/%m/%Y %H:%M:%S"
start_time = cal_df.iloc[-1]['data'].sec.values[-1]
data_df = xsens_df[xsens_df.sec > start_time]
activity_start = 0
activity_end = 0
activity_list = []
for index, row in activity_df.iterrows():
sec = datetime.strptime(row['Timestamps'], fmt).timestamp()
if not test_standing and row['Activity'] == 'standing':
continue
if row['Event'] == 'start':
activity_start = sec
elif row['Event'] == 'end':
activity_stop = sec
dsync = DataSynchronizer()
dsync.set_bounds(data_df['sec'].values, activity_start,
activity_stop)
sync_df = dsync.sync_df(data_df.copy())
activity_data = {'activity': row['Activity'], 'data': sync_df}
activity_list.append(activity_data)
return pd.DataFrame(activity_list)
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
def dsp_win_func(w_inds, df, i, cols):
time = df['sec'].values
if w_inds[-1] == 0: return
w_df = df.iloc[w_inds]
t0, t1 = time[w_inds][0], time[w_inds][-1]
diff = time[w_inds[1:]] - time[w_inds[0:-1]]
mask = np.abs(diff)>20
diff_chk = np.any(mask)
if diff_chk:
return
# cols = ['acc_x', 'acc_y', 'acc_z',
# 'gyr_x', 'gyr_y', 'gyr_z']
data = w_df[cols].values
if reject_artefact((data-np.mean(data,axis=0))/np.std(data,axis=0)):
return
# DSP
pca = PCA(n_components=1, random_state=3)
# do hernandez sp on datacols for df
filt = hernandez_sp(data=data, fs=IMU_FS)[1]
# pca
pca_out = pca.fit_transform(filt)
std = StandardScaler().fit_transform(pca_out)
pred = get_max_frequency(std, fs=FS_RESAMPLE)
# get pss / br estimates
# x_time median, pss max_freq, br median
sm_out = w_df['BR'].values
ps_out = w_df['PSS'].values
x_vec_time = np.median(time[w_inds])
fs = 1/np.mean(diff)
ps_freq = int(get_max_frequency(ps_out, fs=IMU_FS))
y_tmp = np.array([x_vec_time, np.nanmedian(sm_out), ps_freq])
y_hat = pd.DataFrame([ {'sec': x_vec_time, 'pred': pred} ])
y_out = pd.DataFrame([y_tmp], columns=['sec', 'br', 'pss'])
return y_hat, y_out
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
# save evaluation metrics in single file that handles the models for the
# subject and config
class EvalHandler():
def __init__(self, y_true, y_pred, subject, pfh, mdl_str, overwrite=False):
self.subject = subject
self.config = pfh.config
self.parent_directory = join(DATA_DIR, 'subject_specific')
self.fset_id = pfh.fset_id
self.mdl_str = mdl_str
self.overwrite = overwrite
self.evals = Evaluation(y_true, y_pred)
entry = {'subject': self.subject,
'config_id': self.fset_id,
'mdl_str': self.mdl_str,
}
self.entry = {**entry, **self.config, **self.evals.get_evals()}
self.eval_history_file = join(self.parent_directory,
'eval_history.csv')
self.eval_hist = self.load_eval_history()
def load_eval_history(self):
if not exists(self.eval_history_file):
return None
else:
return pd.read_csv(self.eval_history_file)
def update_eval_history(self):
eval_hist = self.eval_hist
if eval_hist is None:
eval_hist = pd.DataFrame([self.entry])
else:
index_list = eval_hist[
(eval_hist['subject'] == self.entry['subject']) &\
(eval_hist['config_id'] == self.entry['config_id']) &\
(eval_hist['mdl_str'] == self.entry['mdl_str']) &\
(eval_hist['cpm'] == self.entry['cpm'])\
].index.tolist()
if len(index_list) == 0:
print("adding new entry")
eval_hist = eval_hist._append(self.entry, ignore_index=True)
elif index_list is not None and self.overwrite:
eval_hist.loc[index_list[0]] = self.entry
self.eval_hist = eval_hist
def save_eval_history(self):
self.eval_hist.to_csv(self.eval_history_file, index=False)
def imu_rr_dsp(subject,
window_size=12,
window_shift=0.2,
lbl_str='pss',
overwrite=False,
train_len:int=3,
test_standing=False,
):
do_minirocket = False
use_tsfresh = False
overwrite_tsfresh = True
train_size = int(train_len)
config = {'window_size' : window_size,
'window_shift' : window_shift,
'lbl_str' : lbl_str,
'train_len' : train_len,
}
pfh = ProjectFileHandler(config)
pfh.set_home_directory(join(DATA_DIR, 'subject_specific', subject))
id_check = pfh.get_id_from_config()
if id_check is None:
pfh.set_project_directory()
pfh.save_metafile()
else:
pfh.set_id(int(id_check))
pfh.set_project_directory()
print('Using pre-set data id: ', pfh.fset_id)
project_dir = pfh.project_directory
xsens_df = load_and_sync_xsens(subject, sens_list=['imu'])
activity_df = get_activity_log(subject)
event_df = get_respiration_log(subject)
cal_df = get_cal_data(event_df, xsens_df)
# include standing or not
test_df_tmp = get_test_data(cal_df, activity_df, xsens_df, test_standing)
test_df = pd.concat([df for df in test_df_tmp['data']], axis=0)
x_test_df, y_test_df = get_df_windows(test_df,
imu_df_win_task,
window_size=window_size,
window_shift=window_shift,
fs=fs,
)
acc_dsp_df, acc_y_dsp_df = get_df_windows(test_df, dsp_win_func,
window_size=window_size,
window_shift=window_shift,
fs=fs,
cols=['acc_x', 'acc_y', 'acc_z'])
gyr_dsp_df, gyr_y_dsp_df = get_df_windows(test_df, dsp_win_func,
window_size=window_size,
window_shift=window_shift,
fs=fs,
cols=['gyr_x', 'gyr_y', 'gyr_z'])
acc_evals = Evaluation(acc_y_dsp_df[lbl_str], acc_dsp_df['pred'])
gyr_evals = Evaluation(gyr_y_dsp_df[lbl_str], gyr_dsp_df['pred'])
print("acc evals: \n", acc_evals.get_evals())
print("gyr evals: \n", gyr_evals.get_evals())
plt.subplot(211)
plt.plot(acc_y_dsp_df[lbl_str]); plt.plot(acc_dsp_df['pred'])
plt.subplot(212)
plt.plot(gyr_y_dsp_df[lbl_str]); plt.plot(gyr_dsp_df['pred'])
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
eval_handle = EvalHandler(y_test.flatten(), preds.flatten(), subject,
pfh, None, overwrite=overwrite)
eval_handle.update_eval_history()
eval_handle.save_eval_history()
pp = PrettyPrinter()
pp.pprint(eval_handle.load_eval_history())
fig, ax = plt.subplots()
fig_title = '_'.join([mdl_str, subject]+[combi_str])
ax.plot(y_test)
ax.plot(preds)
ax.set_title(fig_title)
ax.legend([lbl_str, 'pred'])
fig_dir = join(project_dir, 'figures')
if not exists(fig_dir): mkdir(fig_dir)
fig.savefig(join(fig_dir, fig_title+".png"))
plt.close()
def sens_rr_model(subject,
window_size=12,
window_shift=0.2,
lbl_str='pss',
mdl_str='knn',
overwrite=False,
feature_method='tsfresh',
train_len:int=3,
test_standing=False,
data_input:str='imu+bvp',
):
# window_size, window_shift, intra, inter
cal_str = 'cpm'
tmp = []
imu_cols = IMU_COLS
bvp_cols = ['bvp']
if 'imu' in data_input and 'bvp' in data_input:
data_cols = ['acc_x', 'acc_y', 'acc_z',
'gyro_x', 'gyro_y', 'gyro_z',
'bvp']
parent_directory_string = "imu-bvp_rr"
data_input = 'imu+bvp'
sens_list = ['imu', 'bvp']
fs = IMU_FS
elif 'imu' in data_input and not 'bvp' in data_input:
data_cols = ['acc_x', 'acc_y', 'acc_z',
'gyro_x', 'gyro_y', 'gyro_z',]
parent_directory_string = "imu_rr"
sens_list = ['imu']
fs = IMU_FS
elif not 'imu' in data_input and 'bvp' in data_input:
data_cols = ['bvp']
parent_directory_string = "bvp_rr"
sens_list = ['bvp']
fs = PPG_FS
do_minirocket = False
use_tsfresh = False
overwrite_tsfresh = True
train_size = int(train_len)
if feature_method == 'tsfresh':
use_tsfresh = True
elif feature_method == 'minirocket':
do_minirocket = True
config = {'window_size' : window_size,
'window_shift' : window_shift,
'lbl_str' : lbl_str,
'do_minirocket' : do_minirocket,
'use_tsfresh' : use_tsfresh,
'train_len' : train_len,
'test_standing' : test_standing,
'sens_list' : data_input
}
pfh = ProjectFileHandler(config)
pfh.set_home_directory(join(DATA_DIR, 'subject_specific', subject))
pfh.set_parent_directory(parent_directory_string)
id_check = pfh.get_id_from_config()
if id_check is None:
pfh.set_project_directory()
pfh.save_metafile()
else:
pfh.set_id(int(id_check))
pfh.set_project_directory()
print('Using pre-set data id: ', pfh.fset_id)
project_dir = pfh.project_directory
xsens_df = load_and_sync_xsens(subject, sens_list=sens_list)
activity_df = get_activity_log(subject)
event_df = get_respiration_log(subject)
cal_df = get_cal_data(event_df, xsens_df)
# TODO: needs to be fixed
if use_tsfresh:
xsens_df = load_tsfresh(xsens_df,
project_dir,
sens_list=sens_list,
window_size=window_size,
window_shift=window_shift,
fs=fs,
overwrite=overwrite_tsfresh,
data_cols=data_cols,
)
# include standing or not
test_df_tmp = get_test_data(cal_df, activity_df, xsens_df, test_standing)
test_df = pd.concat([df for df in test_df_tmp['data']], axis=0)
x_test_df, y_test_df = get_df_windows(
test_df, df_win_task, window_size=window_size,
window_shift=window_shift, fs=fs, cols=data_cols)
for combi in combinations(cal_df[cal_str].values, train_len):
combi_str = "-".join([str(x) for x in combi])
pfh.config[cal_str] = combi_str
marker = f'{parent_directory_string}_{subject}_id{pfh.fset_id}'\
f'_combi{combi_str}'
train_df_list = []
for cpm in combi:
df = cal_df[cal_df[cal_str] == cpm]
data_df = df['data'].iloc[0]
data_df['cpm'] = cpm
train_df_list.append(data_df)
train_df = pd.concat(train_df_list)
assert np.isin(train_df.index.values, test_df.index.values).any()==False,\
"overlapping test and train data"
print("train")
print(train_df.shape)
print("test")
print(test_df.shape)
if do_minirocket:
x_train_df, y_train_df = get_df_windows(train_df,