Skip to content
Snippets Groups Projects
utils.py 16.2 KiB
Newer Older
Raymond Chia's avatar
Raymond Chia committed
from itertools import repeat
from multiprocessing import Pool, cpu_count
from os.path import join, exists

import numpy as np
import pandas as pd
import tensorflow as tf

from sklearn.preprocessing import PolynomialFeatures, LabelEncoder
from sklearn.model_selection import train_test_split
from modules.datapipeline import load_and_snip
from modules.digitalsignalprocessing import vectorized_slide_win as vsw

from models.ardregression import ARDRegressionClass
from models.knn import KNNClass
from models.svm import SVMClass
from models.lda import LDAClass
from models.svr import SVRClass
from models.logisticregression import LogisticRegressionClass
from models.linearregression import LinearRegressionClass
from models.neuralnet import FNN_HyperModel, LSTM_HyperModel, TunerClass,\
        CNN1D_HyperModel
from models.ridgeclass import RidgeClass
from models.elasticnet import ElasticNetClass
from models.resnet import Regressor_RESNET, Classifier_RESNET
from models.xgboostclass import XGBoostClass

from tsfresh.feature_selection import relevance as tsfresh_relevance
from tsfresh.utilities.string_manipulation import get_config_from_string

from sktime.transformations.panel.rocket import (
        MiniRocket,
        MiniRocketMultivariate,
        MiniRocketMultivariateVariable,
)

from config import WINDOW_SIZE, WINDOW_SHIFT, IMU_FS

def reshape_array(data):
    shape = data.shape
    return data.reshape((shape[0], shape[2], shape[1]))

def get_win_conds(time, lbls, wins):
    ''' get median condition of each window '''
    le = LabelEncoder()
    c_enc = le.fit_transform(lbls)
    c_enc_win = get_windowed_data(time, c_enc, wins)
    c_enc_win = np.median(c_enc_win, axis=-1)
    return le.inverse_transform(c_enc_win.astype(int))

# Perform sliding window operation
def create_windows(time, x, y, window_size=WINDOW_SIZE,
                   window_shift=WINDOW_SHIFT, fs=IMU_FS):
    inds = np.arange(0, len(time))
    wins = vsw(inds, len(inds),
               sub_window_size=window_size*fs,
               stride_size=window_shift*fs)
    x_win = get_windowed_data(time, x, wins)
    x_win = reshape_array(x_win)
    y_win = get_windowed_data(time, y, wins)

    # Take median of the window as label
    y_win = np.median(y_win, axis=-1)
    return x_win, y_win

# Choose top n more relevant feature parameters from tsfresh library
def get_top_tsfresh_params(x_train_df, y_train_df, lbl_str='br',
                           ntop_features=5):
    x_train_df = x_train_df.fillna(0)
    rel_df = tsfresh_relevance.calculate_relevance_table(
        x_train_df, y_train_df[lbl_str])

    params = rel_df['feature'].iloc[:ntop_features].values
    return params

def get_data_cols(df):
    cols = df.columns.values
    data_cols = cols[5:]
    return data_cols

def get_label_cols(df):
    cols = df.columns.values
    br_str = [f for f in cols if f.lower() == 'br'][0]
    lbl_cols = [br_str, 'condition']
    return lbl_cols

def get_conditions_from_glob(glob_pattern):
    if glob_pattern == '[!M]*':
        conditions = ['R', 'L0', 'L1', 'L2', 'L3']
    elif glob_pattern == 'L*':
        conditions = ['L0', 'L1', 'L2', 'L3']
    else:
        sys.exit("Unmatched glob pattern")
    return conditions

# Returns intra subject relevant features
def get_intra_feature_hist(df_list, lbl_str='br', ntop_features=5):
    df = df_list[0].copy()
    data_cols = get_data_cols(df)
    lbl_cols = get_label_cols(df)

    sbj_param_dict = {}

    for df in df_list:
        df.dropna(inplace=True)
        x = df[data_cols]
        y = df[lbl_cols]
        sbj = int(df['subject'].values[0])
        params = get_top_tsfresh_params(x, y, lbl_str=lbl_str,
                                        ntop_features=ntop_features)
        sbj_param_dict[sbj] = params

    sbj_param_df = pd.DataFrame.from_dict(sbj_param_dict, orient='index')
    cols = sbj_param_df.columns.values
    arr = sbj_param_df[cols].values.flatten()

    hist_df = pd.DataFrame.from_dict(Counter(arr), orient='index')
    return hist_df

# Returns inter subject relevant features
def get_inter_feature_hist(df, lbl_str='br', ntop_features=5, nsbjs=30):
    data_cols = get_data_cols(df)
    lbl_cols = get_label_cols(df)

    # drop 
    df.dropna(inplace=True)

    # Check for overlapping times
    x_time = df['ms'].values

    sbj_param_dict = {}
    x = df[data_cols]
    y = df[lbl_cols]
    params = get_top_tsfresh_params(x, y, lbl_str=lbl_str,
                                    ntop_features=ntop_features)
    sbj_param_dict[0] = params

    sbj_param_df = pd.DataFrame.from_dict(sbj_param_dict, orient='index')
    cols = sbj_param_df.columns.values
    arr = sbj_param_df[cols].values.flatten()

    hist_df = pd.DataFrame.from_dict(Counter(arr), orient='index')
    return hist_df

# Perform generic model training
def model_training(mdl_str, x_train, y_train, marker,
                   validation_data=None, overwrite=False,
                   is_regression=False, project_directory=None,
Raymond Chia's avatar
Raymond Chia committed
                   window_size=50, extra_train=20, poly_deg=1):
Raymond Chia's avatar
Raymond Chia committed
    directory = join(project_directory, '_'.join([mdl_str, marker]))

    if validation_data is not None:
        x_val, y_val = validation_data[0], validation_data[1]

    if mdl_str not in ['fnn', 'lstm', 'cnn1d'] and validation_data is not None:
        x_train = np.concatenate((x_train, x_val), axis=0)
        y_train = np.concatenate((y_train, y_val), axis=0)

    if mdl_str == 'fnn':
        print("---FNN---")
        fnn_hypermodel = FNN_HyperModel()
        fnn_hypermodel.n_features  = x_train.shape[-1]
        fnn_hypermodel.window_size = window_size
        fnn_hypermodel.batch_size  = 32
        if is_regression:
            fnn_hypermodel.n_labels = 1
            fnn_hypermodel.loss_fn = tf.keras.losses.MeanAbsoluteError()
        else:
            fnn_hypermodel.n_labels = len(np.unique(y_train))
            fnn_hypermodel.loss_fn = \
                    tf.keras.losses.SparseCategoricalCrossentropy()

        tuner = TunerClass(fnn_hypermodel, marker=marker,
                           tuner_type='bayesianoptimization',
                           overwrite=overwrite, directory=directory)

        if validation_data is None:
            tuner.search(x_train, y_train, None, validation_split=0.2)
        else:
            tuner.search(x_train, y_train, (x_val, y_val))

        if overwrite or not exists(tuner.best_model_path+'.index'):
            hypermodel.verbose = True
            callbacks = tuner.get_callbacks(epochs=extra_train)
            fnn_mdl = tuner.load_model(is_training=True)
            history = fnn_hypermodel.fit(
                None, fnn_mdl, x_train, y_train,
                validation_data=validation_data, epochs=extra_train,
            )
            tuner.save_weights_to_path()

        tuner.load_model(is_training=False)
        tuner.load_weights_from_path()
        fnn_mdl = tuner.tuner.hypermodel.model
        return None, fnn_mdl
    elif mdl_str == 'lstm':
        print("---LSTM---")
        lstm_hypermodel = LSTM_HyperModel()
        lstm_hypermodel.n_features  = x_train.shape[-1]
        lstm_hypermodel.window_size = window_size
        lstm_hypermodel.batch_size  = 32
        if is_regression:
            lstm_hypermodel.n_labels = 1
            lstm_hypermodel.loss_fn = tf.keras.losses.MeanAbsoluteError()
        else:
            lstm_hypermodel.n_labels = len(np.unique(y_train))
            lstm_hypermodel.loss_fn = \
                    tf.keras.losses.SparseCategoricalCrossentropy()
            lstm_hypermodel.metrics = [tf.keras.metrics.SparseCategoricalAccuracy()]

        print("input shape: ", (lstm_hypermodel.window_size,
              lstm_hypermodel.n_features))
        print("x shape: ", x_train.shape)
        tuner = TunerClass(lstm_hypermodel, marker=marker,
                           tuner_type='bayesianoptimization',
                           overwrite=overwrite, directory=directory)

        if validation_data is None:
            tuner.search(x_train, y_train, None, validation_split=0.2)
        else:
            tuner.search(x_train, y_train, (x_val, y_val))

        if overwrite or not exists(tuner.best_model_path+'.index'):
            lstm_mdl = tuner.load_model(is_training=True)
            lstm_hypermodel.verbose = True
            callbacks = tuner.get_callbacks(epochs=extra_train)
            history = lstm_hypermodel.fit(
                None, lstm_mdl, x_train, y_train,
                validation_data=validation_data, epochs=extra_train,
                callbacks=callbacks
            )
            tuner.save_weights_to_path()

        tuner.load_model(is_training=False)
        tuner.load_weights_from_path()
        lstm_mdl = tuner.tuner.hypermodel.model
        return None, lstm_mdl
    elif mdl_str == 'cnn1d':
        print("---CNN1D---")
        n_features = x_train.shape[-1]
        hypermodel = CNN1D_HyperModel()
        hypermodel.n_features  = n_features
        hypermodel.window_size = window_size
        hypermodel.input_shape = (window_size, n_features)
        hypermodel.batch_size  = 32
        if is_regression:
            hypermodel.n_labels = 1
            hypermodel.loss_fn = tf.keras.losses.MeanAbsoluteError()
            hypermodel.metrics = None
        else:
            hypermodel.n_labels = len(np.unique(y_train))

        print("input shape: ", hypermodel.input_shape)
        print("x shape: ", x_train.shape)
        tuner = TunerClass(hypermodel, marker=marker,
                           tuner_type='bayesianoptimization',
                           overwrite=overwrite, directory=directory)

        if validation_data is None:
            tuner.search(x_train, y_train, validation_data,
Raymond Chia's avatar
Raymond Chia committed
                         validation_split=0.2)
Raymond Chia's avatar
Raymond Chia committed
        else:
Raymond Chia's avatar
Raymond Chia committed
            tuner.search(x_train, y_train, validation_data)
Raymond Chia's avatar
Raymond Chia committed

        if overwrite or not exists(tuner.best_model_path+'.index'):
            mdl = tuner.load_model(is_training=True)
            hypermodel.verbose = True
            callbacks = tuner.get_callbacks(epochs=extra_train)

            history = hypermodel.fit(
                None, mdl, x_train, y_train,
                validation_data=validation_data, epochs=extra_train,
                callbacks=callbacks,
            )
            tuner.save_weights_to_path()

        tuner.load_model(is_training=False)
        tuner.load_weights_from_path()
        mdl = tuner.tuner.hypermodel.model
        return None, mdl
    elif mdl_str == 'xgboost':
        mdl_cls = XGBoostClass(marker=marker, directory=directory)
        if is_regression:
            mdl_cls.mdl_type = 'regressor'
        else:
            mdl_cls.mdl_type = 'classifier'
    elif mdl_str == 'knn':
        print("---KNN---")
        mdl_cls = KNNClass(marker=marker, directory=directory)
        mdl_cls.is_regression = is_regression
        if not is_regression:
            knn.n_neighbors = len(np.unique(y_train))
    elif mdl_str == 'linreg':
        print("---LinearRegression---")
        # n to 2 if full set, 1 if M and R
Raymond Chia's avatar
Raymond Chia committed
        poly = PolynomialFeatures(poly_deg)
Raymond Chia's avatar
Raymond Chia committed
        x_train_poly = poly.fit_transform(x_train)
        mdl_cls = LinearRegressionClass(marker=marker, directory=directory)
        if overwrite:
            mdl_cls.build()
            mdl_cls.model.fit(x_train_poly, y_train)
            mdl_cls.save_model()
        else:
            try:
                mdl_cls.load_model()
            except:
                mdl_cls.build()
                mdl_cls.model.fit(x_train_poly, y_train)
                mdl_cls.save_model()
        return poly, mdl_cls.model
    elif mdl_str == 'svm':
        print("---SVM---")
        mdl_cls = SVMClass(marker=marker, directory=directory)
    elif mdl_str == 'svr':
        print("---SVR---")
        mdl_cls = SVRClass(marker=marker, directory=directory)
    elif mdl_str == 'elastic':
        print("---ElasticNet---")
        mdl_cls = ElasticNetClass(marker=marker, directory=directory)
    elif mdl_str == 'logreg':
        print("---LogisticRegression---")
        mdl_cls = LogisticRegressionClass(marker=marker, directory=directory)
    elif mdl_str == 'lda':
        print("---Linear Discriminant Analysis---")
        mdl_cls = LDAClass(marker=marker, directory=directory)
    elif mdl_str == 'ard':
        print("---ARD---")
        mdl_cls = ARDRegressionClass(marker=marker, directory=directory)
    elif mdl_str == 'ridge':
        print("---Ridge---")
        mdl_cls = RidgeClass(marker=marker, directory=directory)

    if overwrite:
        mdl = mdl_cls.build()
        mdl.fit(x_train, y_train)
        mdl_cls.model = mdl
        mdl_cls.save_model()
    else:
        try:
            mdl_cls.load_model()
            mdl = mdl_cls.model
        except:
            mdl = mdl_cls.build()
            mdl.fit(x_train, y_train)
            mdl_cls.model = mdl
            mdl_cls.save_model()
    return None, mdl

def check_if_none(data):
    if data is not None:
        return data[0], data[1]

def get_df_windows(df, func, window_size=15, window_shift=0.2, fs=IMU_FS,
                  cols=None):
    time = df['sec'].values
    inds = np.arange(len(df))
    window_shift *= window_size
    wins = vsw(inds, len(inds), sub_window_size=int(window_size*fs),
               stride_size=int(window_shift*fs))
    x, y = [], []
    x_df_out = pd.DataFrame()
    N = len(wins)
    i_list = [n for n in range(N)]
    args = zip(wins.tolist(), repeat(df, N), i_list, [cols]*N)

    out_data = []
    # with Pool(cpu_count()) as p:
    #     out_data = p.starmap(func, args)
    for i, win in enumerate(wins):
        out_data.append(func(win, df, i, cols))

    x, y = [], []
    for out in out_data:
        if out is not None:
            x.append(out[0])
            y.append(out[1])

    x_df_out = pd.concat(x).reset_index(drop=True)
    y_df_out = pd.concat(y).reset_index(drop=True)

    x_df_out.sort_values(by='sec', inplace=True)
    y_df_out.sort_values(by='sec', inplace=True)

    return x_df_out, y_df_out

def make_windows_from_id(x_df, cols):
    def make_wins(df):
        ids = df.id.unique()
        wins = []
        for i in ids:
            mask = df.id == i
            wins.append(df[mask][cols])
        return wins
    x = make_wins(x_df)
    x_win = np.array(x)
    return x_win

def get_parameters_from_feature_string(feature_names):
    kind_to_fc_parameters = {}
    for feature_name in feature_names:
        split_name = feature_name.split("__")
        sensor_var = split_name[0]
        feature_var = split_name[1]
        feature_cfg = get_config_from_string(split_name)
        if feature_cfg is not None: feature_cfg = [feature_cfg]
        tmp = {feature_var: feature_cfg}
        if sensor_var in kind_to_fc_parameters.keys():
            params = kind_to_fc_parameters[sensor_var]
            if feature_var in params.keys():
                feature_param = params[feature_var]
                if isinstance(feature_param, list):
                    params[feature_var] = feature_param + feature_cfg
                else:
                    params[feature_var] = [feature_param] + feature_cfg
            else:
                params[feature_var] = feature_cfg
            kind_to_fc_parameters[sensor_var] = params
        else:
            kind_to_fc_parameters[sensor_var] = tmp
    return kind_to_fc_parameters

def split_timeseries_train_test_df(data_list, test_size=0.2, **kwargs):
    # In each of the files: get the last 20% as the test portion
    df_list = load_and_snip(data_list, **kwargs)

    train_data_df, test_data_df  = [], []
    func = partial(train_test_split, test_size=test_size,
                   shuffle=False)
    with Pool(cpu_count()) as p:
        tmp = p.map(func, df_list)

    train_data_df, test_data_df = zip(*tmp)

    train_data_df = pd.concat(train_data_df, ignore_index=True)
    test_data_df = pd.concat(test_data_df, ignore_index=True)

    train_data_df.sort_values(by='ms', inplace=True)
    test_data_df.sort_values(by='ms', inplace=True)

    overlap_flag = np.isin(train_data_df.ms, test_data_df.ms).any()==False
    if not overlap_flag: ipdb.set_trace()
    assert overlap_flag, print("overlapping test and train data")
    return train_data_df, test_data_df

def map_condition_to_tlx(df, tlx_df):
    inds = np.arange(len(df))
    indexes = tlx_df.index.values.tolist() + ['R']
    for index in indexes:
        mask = df['condition'].values == index
        df_inds = df.index[mask]
        if index in ['R', 'M']:
            df.loc[df_inds, 'tlx'] = 0
        else:
            df.loc[df_inds, 'tlx'] = tlx_df[index]
    return df