Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
from itertools import repeat
from multiprocessing import Pool, cpu_count
from os.path import join, exists
import numpy as np
import pandas as pd
import tensorflow as tf
from sklearn.preprocessing import PolynomialFeatures, LabelEncoder
from sklearn.model_selection import train_test_split
from modules.datapipeline import load_and_snip
from modules.digitalsignalprocessing import vectorized_slide_win as vsw
from models.ardregression import ARDRegressionClass
from models.knn import KNNClass
from models.svm import SVMClass
from models.lda import LDAClass
from models.svr import SVRClass
from models.logisticregression import LogisticRegressionClass
from models.linearregression import LinearRegressionClass
from models.neuralnet import FNN_HyperModel, LSTM_HyperModel, TunerClass,\
CNN1D_HyperModel
from models.ridgeclass import RidgeClass
from models.elasticnet import ElasticNetClass
from models.resnet import Regressor_RESNET, Classifier_RESNET
from models.xgboostclass import XGBoostClass
from tsfresh.feature_selection import relevance as tsfresh_relevance
from tsfresh.utilities.string_manipulation import get_config_from_string
from sktime.transformations.panel.rocket import (
MiniRocket,
MiniRocketMultivariate,
MiniRocketMultivariateVariable,
)
from config import WINDOW_SIZE, WINDOW_SHIFT, IMU_FS
def reshape_array(data):
shape = data.shape
return data.reshape((shape[0], shape[2], shape[1]))
def get_win_conds(time, lbls, wins):
''' get median condition of each window '''
le = LabelEncoder()
c_enc = le.fit_transform(lbls)
c_enc_win = get_windowed_data(time, c_enc, wins)
c_enc_win = np.median(c_enc_win, axis=-1)
return le.inverse_transform(c_enc_win.astype(int))
# Perform sliding window operation
def create_windows(time, x, y, window_size=WINDOW_SIZE,
window_shift=WINDOW_SHIFT, fs=IMU_FS):
inds = np.arange(0, len(time))
wins = vsw(inds, len(inds),
sub_window_size=window_size*fs,
stride_size=window_shift*fs)
x_win = get_windowed_data(time, x, wins)
x_win = reshape_array(x_win)
y_win = get_windowed_data(time, y, wins)
# Take median of the window as label
y_win = np.median(y_win, axis=-1)
return x_win, y_win
# Choose top n more relevant feature parameters from tsfresh library
def get_top_tsfresh_params(x_train_df, y_train_df, lbl_str='br',
ntop_features=5):
x_train_df = x_train_df.fillna(0)
rel_df = tsfresh_relevance.calculate_relevance_table(
x_train_df, y_train_df[lbl_str])
params = rel_df['feature'].iloc[:ntop_features].values
return params
def get_data_cols(df):
cols = df.columns.values
data_cols = cols[5:]
return data_cols
def get_label_cols(df):
cols = df.columns.values
br_str = [f for f in cols if f.lower() == 'br'][0]
lbl_cols = [br_str, 'condition']
return lbl_cols
def get_conditions_from_glob(glob_pattern):
if glob_pattern == '[!M]*':
conditions = ['R', 'L0', 'L1', 'L2', 'L3']
elif glob_pattern == 'L*':
conditions = ['L0', 'L1', 'L2', 'L3']
else:
sys.exit("Unmatched glob pattern")
return conditions
# Returns intra subject relevant features
def get_intra_feature_hist(df_list, lbl_str='br', ntop_features=5):
df = df_list[0].copy()
data_cols = get_data_cols(df)
lbl_cols = get_label_cols(df)
sbj_param_dict = {}
for df in df_list:
df.dropna(inplace=True)
x = df[data_cols]
y = df[lbl_cols]
sbj = int(df['subject'].values[0])
params = get_top_tsfresh_params(x, y, lbl_str=lbl_str,
ntop_features=ntop_features)
sbj_param_dict[sbj] = params
sbj_param_df = pd.DataFrame.from_dict(sbj_param_dict, orient='index')
cols = sbj_param_df.columns.values
arr = sbj_param_df[cols].values.flatten()
hist_df = pd.DataFrame.from_dict(Counter(arr), orient='index')
return hist_df
# Returns inter subject relevant features
def get_inter_feature_hist(df, lbl_str='br', ntop_features=5, nsbjs=30):
data_cols = get_data_cols(df)
lbl_cols = get_label_cols(df)
# drop
df.dropna(inplace=True)
# Check for overlapping times
x_time = df['ms'].values
sbj_param_dict = {}
x = df[data_cols]
y = df[lbl_cols]
params = get_top_tsfresh_params(x, y, lbl_str=lbl_str,
ntop_features=ntop_features)
sbj_param_dict[0] = params
sbj_param_df = pd.DataFrame.from_dict(sbj_param_dict, orient='index')
cols = sbj_param_df.columns.values
arr = sbj_param_df[cols].values.flatten()
hist_df = pd.DataFrame.from_dict(Counter(arr), orient='index')
return hist_df
# Perform generic model training
def model_training(mdl_str, x_train, y_train, marker,
validation_data=None, overwrite=False,
is_regression=False, project_directory=None,
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
directory = join(project_directory, '_'.join([mdl_str, marker]))
if validation_data is not None:
x_val, y_val = validation_data[0], validation_data[1]
if mdl_str not in ['fnn', 'lstm', 'cnn1d'] and validation_data is not None:
x_train = np.concatenate((x_train, x_val), axis=0)
y_train = np.concatenate((y_train, y_val), axis=0)
if mdl_str == 'fnn':
print("---FNN---")
fnn_hypermodel = FNN_HyperModel()
fnn_hypermodel.n_features = x_train.shape[-1]
fnn_hypermodel.window_size = window_size
fnn_hypermodel.batch_size = 32
if is_regression:
fnn_hypermodel.n_labels = 1
fnn_hypermodel.loss_fn = tf.keras.losses.MeanAbsoluteError()
else:
fnn_hypermodel.n_labels = len(np.unique(y_train))
fnn_hypermodel.loss_fn = \
tf.keras.losses.SparseCategoricalCrossentropy()
tuner = TunerClass(fnn_hypermodel, marker=marker,
tuner_type='bayesianoptimization',
overwrite=overwrite, directory=directory)
if validation_data is None:
tuner.search(x_train, y_train, None, validation_split=0.2)
else:
tuner.search(x_train, y_train, (x_val, y_val))
if overwrite or not exists(tuner.best_model_path+'.index'):
hypermodel.verbose = True
callbacks = tuner.get_callbacks(epochs=extra_train)
fnn_mdl = tuner.load_model(is_training=True)
history = fnn_hypermodel.fit(
None, fnn_mdl, x_train, y_train,
validation_data=validation_data, epochs=extra_train,
)
tuner.save_weights_to_path()
tuner.load_model(is_training=False)
tuner.load_weights_from_path()
fnn_mdl = tuner.tuner.hypermodel.model
return None, fnn_mdl
elif mdl_str == 'lstm':
print("---LSTM---")
lstm_hypermodel = LSTM_HyperModel()
lstm_hypermodel.n_features = x_train.shape[-1]
lstm_hypermodel.window_size = window_size
lstm_hypermodel.batch_size = 32
if is_regression:
lstm_hypermodel.n_labels = 1
lstm_hypermodel.loss_fn = tf.keras.losses.MeanAbsoluteError()
else:
lstm_hypermodel.n_labels = len(np.unique(y_train))
lstm_hypermodel.loss_fn = \
tf.keras.losses.SparseCategoricalCrossentropy()
lstm_hypermodel.metrics = [tf.keras.metrics.SparseCategoricalAccuracy()]
print("input shape: ", (lstm_hypermodel.window_size,
lstm_hypermodel.n_features))
print("x shape: ", x_train.shape)
tuner = TunerClass(lstm_hypermodel, marker=marker,
tuner_type='bayesianoptimization',
overwrite=overwrite, directory=directory)
if validation_data is None:
tuner.search(x_train, y_train, None, validation_split=0.2)
else:
tuner.search(x_train, y_train, (x_val, y_val))
if overwrite or not exists(tuner.best_model_path+'.index'):
lstm_mdl = tuner.load_model(is_training=True)
lstm_hypermodel.verbose = True
callbacks = tuner.get_callbacks(epochs=extra_train)
history = lstm_hypermodel.fit(
None, lstm_mdl, x_train, y_train,
validation_data=validation_data, epochs=extra_train,
callbacks=callbacks
)
tuner.save_weights_to_path()
tuner.load_model(is_training=False)
tuner.load_weights_from_path()
lstm_mdl = tuner.tuner.hypermodel.model
return None, lstm_mdl
elif mdl_str == 'cnn1d':
print("---CNN1D---")
n_features = x_train.shape[-1]
hypermodel = CNN1D_HyperModel()
hypermodel.n_features = n_features
hypermodel.window_size = window_size
hypermodel.input_shape = (window_size, n_features)
hypermodel.batch_size = 32
if is_regression:
hypermodel.n_labels = 1
hypermodel.loss_fn = tf.keras.losses.MeanAbsoluteError()
hypermodel.metrics = None
else:
hypermodel.n_labels = len(np.unique(y_train))
print("input shape: ", hypermodel.input_shape)
print("x shape: ", x_train.shape)
tuner = TunerClass(hypermodel, marker=marker,
tuner_type='bayesianoptimization',
overwrite=overwrite, directory=directory)
if validation_data is None:
tuner.search(x_train, y_train, validation_data,
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
if overwrite or not exists(tuner.best_model_path+'.index'):
mdl = tuner.load_model(is_training=True)
hypermodel.verbose = True
callbacks = tuner.get_callbacks(epochs=extra_train)
history = hypermodel.fit(
None, mdl, x_train, y_train,
validation_data=validation_data, epochs=extra_train,
callbacks=callbacks,
)
tuner.save_weights_to_path()
tuner.load_model(is_training=False)
tuner.load_weights_from_path()
mdl = tuner.tuner.hypermodel.model
return None, mdl
elif mdl_str == 'xgboost':
mdl_cls = XGBoostClass(marker=marker, directory=directory)
if is_regression:
mdl_cls.mdl_type = 'regressor'
else:
mdl_cls.mdl_type = 'classifier'
elif mdl_str == 'knn':
print("---KNN---")
mdl_cls = KNNClass(marker=marker, directory=directory)
mdl_cls.is_regression = is_regression
if not is_regression:
knn.n_neighbors = len(np.unique(y_train))
elif mdl_str == 'linreg':
print("---LinearRegression---")
# n to 2 if full set, 1 if M and R
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
x_train_poly = poly.fit_transform(x_train)
mdl_cls = LinearRegressionClass(marker=marker, directory=directory)
if overwrite:
mdl_cls.build()
mdl_cls.model.fit(x_train_poly, y_train)
mdl_cls.save_model()
else:
try:
mdl_cls.load_model()
except:
mdl_cls.build()
mdl_cls.model.fit(x_train_poly, y_train)
mdl_cls.save_model()
return poly, mdl_cls.model
elif mdl_str == 'svm':
print("---SVM---")
mdl_cls = SVMClass(marker=marker, directory=directory)
elif mdl_str == 'svr':
print("---SVR---")
mdl_cls = SVRClass(marker=marker, directory=directory)
elif mdl_str == 'elastic':
print("---ElasticNet---")
mdl_cls = ElasticNetClass(marker=marker, directory=directory)
elif mdl_str == 'logreg':
print("---LogisticRegression---")
mdl_cls = LogisticRegressionClass(marker=marker, directory=directory)
elif mdl_str == 'lda':
print("---Linear Discriminant Analysis---")
mdl_cls = LDAClass(marker=marker, directory=directory)
elif mdl_str == 'ard':
print("---ARD---")
mdl_cls = ARDRegressionClass(marker=marker, directory=directory)
elif mdl_str == 'ridge':
print("---Ridge---")
mdl_cls = RidgeClass(marker=marker, directory=directory)
if overwrite:
mdl = mdl_cls.build()
mdl.fit(x_train, y_train)
mdl_cls.model = mdl
mdl_cls.save_model()
else:
try:
mdl_cls.load_model()
mdl = mdl_cls.model
except:
mdl = mdl_cls.build()
mdl.fit(x_train, y_train)
mdl_cls.model = mdl
mdl_cls.save_model()
return None, mdl
def check_if_none(data):
if data is not None:
return data[0], data[1]
def get_df_windows(df, func, window_size=15, window_shift=0.2, fs=IMU_FS,
cols=None):
time = df['sec'].values
inds = np.arange(len(df))
window_shift *= window_size
wins = vsw(inds, len(inds), sub_window_size=int(window_size*fs),
stride_size=int(window_shift*fs))
x, y = [], []
x_df_out = pd.DataFrame()
N = len(wins)
i_list = [n for n in range(N)]
args = zip(wins.tolist(), repeat(df, N), i_list, [cols]*N)
out_data = []
# with Pool(cpu_count()) as p:
# out_data = p.starmap(func, args)
for i, win in enumerate(wins):
out_data.append(func(win, df, i, cols))
x, y = [], []
for out in out_data:
if out is not None:
x.append(out[0])
y.append(out[1])
x_df_out = pd.concat(x).reset_index(drop=True)
y_df_out = pd.concat(y).reset_index(drop=True)
x_df_out.sort_values(by='sec', inplace=True)
y_df_out.sort_values(by='sec', inplace=True)
return x_df_out, y_df_out
def make_windows_from_id(x_df, cols):
def make_wins(df):
ids = df.id.unique()
wins = []
for i in ids:
mask = df.id == i
wins.append(df[mask][cols])
return wins
x = make_wins(x_df)
x_win = np.array(x)
return x_win
def get_parameters_from_feature_string(feature_names):
kind_to_fc_parameters = {}
for feature_name in feature_names:
split_name = feature_name.split("__")
sensor_var = split_name[0]
feature_var = split_name[1]
feature_cfg = get_config_from_string(split_name)
if feature_cfg is not None: feature_cfg = [feature_cfg]
tmp = {feature_var: feature_cfg}
if sensor_var in kind_to_fc_parameters.keys():
params = kind_to_fc_parameters[sensor_var]
if feature_var in params.keys():
feature_param = params[feature_var]
if isinstance(feature_param, list):
params[feature_var] = feature_param + feature_cfg
else:
params[feature_var] = [feature_param] + feature_cfg
else:
params[feature_var] = feature_cfg
kind_to_fc_parameters[sensor_var] = params
else:
kind_to_fc_parameters[sensor_var] = tmp
return kind_to_fc_parameters
def split_timeseries_train_test_df(data_list, test_size=0.2, **kwargs):
# In each of the files: get the last 20% as the test portion
df_list = load_and_snip(data_list, **kwargs)
train_data_df, test_data_df = [], []
func = partial(train_test_split, test_size=test_size,
shuffle=False)
with Pool(cpu_count()) as p:
tmp = p.map(func, df_list)
train_data_df, test_data_df = zip(*tmp)
train_data_df = pd.concat(train_data_df, ignore_index=True)
test_data_df = pd.concat(test_data_df, ignore_index=True)
train_data_df.sort_values(by='ms', inplace=True)
test_data_df.sort_values(by='ms', inplace=True)
overlap_flag = np.isin(train_data_df.ms, test_data_df.ms).any()==False
if not overlap_flag: ipdb.set_trace()
assert overlap_flag, print("overlapping test and train data")
return train_data_df, test_data_df
def map_condition_to_tlx(df, tlx_df):
inds = np.arange(len(df))
indexes = tlx_df.index.values.tolist() + ['R']
for index in indexes:
mask = df['condition'].values == index
df_inds = df.index[mask]
if index in ['R', 'M']:
df.loc[df_inds, 'tlx'] = 0
else:
df.loc[df_inds, 'tlx'] = tlx_df[index]
return df