Skip to content
Snippets Groups Projects
Commit 5b41eef9 authored by Felix Kong's avatar Felix Kong
Browse files

add kernel dmd class

parent 40fe4856
Branches
No related merge requests found
......@@ -26,7 +26,7 @@
%% Try DMD on it
clear variables
load data/HamlynHeartImages.mat;
load ../data/HamlynHeartImages.mat;
disp('Data preparation...')
......@@ -92,8 +92,8 @@ toc;
Sfull = sqrtm(S2full);
% truncate
r = size(Ghat,1)-1; % number of dimensions to keep
% r = floor(size(Ghat,1)/2);
% r = size(Ghat,1)-1; % number of dimensions to keep
r = floor(size(Ghat,1)/2);
Q = Qfull(:,1:r);
S = Sfull(1:r,1:r);
......
classdef kernel_dmd < handle
% kernel_dmd
% States are ROWS instead of columns, like they were in DMD.
% Mostly follows notation from Williams et al. "Kernel-based methods
% for Koopman spectral analysis." Journal of Computation Dynamics
% (2015).
properties (SetAccess = private)
% Kernel DMD variables
X;
X2;
Ahat;
Ghat;
r;
Qfull; % left singular vectors of X
Sfull; % singular values of X
Q; % truncated left singular vectors of X
S; % truncated singular values of X
Khat; % low-dimensional "weight-space" dynamics
Vhat; % eigenvectors of weight-space dynamics
Lambda; % eigenvalues of weight-space dynamics
Phi; % Koopman eigenfunctions. projects weight-space to data-space (e.g. images)
Xi; % Koopman modes
% kernel variables
kernel_type;
sigma2;
% variables for preprocessing
ProcessSettings; % used for removing and re-inserting constant rows
scaling_method;
scaleFactor;
scaleOffset;
% configuration
verbose; % controls verbosity
end
methods
function obj = kernel_dmd(data,scaling_method,kernel_type, varargin)
%DMD Construct an instance of this class
% The state at each timestep is a column vector)
% parse some inputs
if(isempty(kernel_type) || kernel_type == "gaussian")
obj.kernel_type = kernel_type;
else
error('Only kernel_type = ''gaussian'' supported right now.')
end
if nargin == 2
obj.verbose = varargin{1};
else
obj.verbose = false;
end
% remove constant rows and scale data
[DataProcessed,obj.ProcessSettings] = removeconstantrows(data);
if(scaling_method ~= "none")
if(isempty(scaling_method))
scaling_method = 'zscore';
end
obj.scaling_method = scaling_method;
[Xall,obj.scaleFactor, obj.scaleOffset] = ScaleData(DataProcessed',scaling_method);
end
%store processed data in member variables
obj.X = Xall(1:end-1,:); % states are ROWS
obj.X2 = Xall(2:end,:);
obj.r = size(X,2); % no truncation by default
end
function regression(obj,sigma2,varargin) % argument is truncation rank r
if nargin == 2
obj.r = varargin{1};
end
obj.sigma2 = sigma2;
tic;
% compute left singular values Qfull and singular values Sfull
obj.Ahat = GaussianKernel(obj.X,obj.X2);
obj.Ghat = GaussianKernel(obj.X,obj.X);
[obj.Qfull, S2full] = eigs(obj.Ghat,size(obj.Ghat,1),'largestabs','Tolerance',1e-19); % i had problems with eigs before, needed to increase tolerance
obj.Sfull = sqrtm(S2full); % could potentially speed up by using the fact S2full is diagonal
% truncate
obj.Q = obj.Qfull(:,1:obj.r);
obj.S = obj.Sfull(1:obj.r,1:obj.r);
% compute the low-dimensional approximation of the Koopman
% operator
obj.Khat = (obj.S\obj.Q')*(obj.Ahat)*(obj.Q/obj.S);
[obj.Vhat, obj.Lambda] = eig(obj.Khat);
obj.Phi = obj.Q*obj.S*obj.Vhat; % projection from weight-space to data-space
obj.Xi = obj.Phi\obj.X;
% tell user how long it took
regressionTime = toc;
if(obj.verbose)
fprintf('DMD regression() took %f seconds.\n',regressionTime);
end
end
function X2hat = reconstruct(obj)
% reconstructs an estimate of X2 using the low-rank
% "weight-space" dynamics x_r(k+1) = Atilde*x_r(k)
%
% useful for getting a feel for how accurate the low-rank
% approximation is.
if(isempty(obj.Qfull) || isempty(obj.Sfull) || isempty(obj.Vhat))
error('Need to run regression() before running reconstruct().');
end
X2hatComplex = obj.Phi*obj.Lambda*obj.Xi;
assert(norm(imag(X2hatComplex)) <= 1e-6,'X2hat has non-negligible imaginary component.');
X2hat = real(X2hatComplex);
end
function xhat = predict(obj,initial_condition,num_timesteps)
% predicts num_timesteps timesteps from an initial condition
% like reconstruct, but more general.
% can be used to predict more timesteps than were in the data
tic;
if(isempty(obj.U0) || isempty(obj.S0) || isempty(obj.V0))
error('Need to run regression() before running predict().');
end
assert(all(size(initial_condition) == [1,size(obj.X,2)]),'Initial condition must be a ROW vector with the same dimension as a row in the data matrix X, which has length %d',size(obj.X,1));
xhat = nan(num_timesteps,length(initial_condition));
xhat(1,:) = initial_condition;
for k = 2:num_timesteps
prev_x = xhat(k-1,:);
kernelmat = GaussianKernel(prev_x,obj.X);
kernelmat = kernelmat(1:num_modes)'; % truncate and turn into row vector
phi_at_t = kernelmat*obj.Q/obj.S*obj.Vhat;
xhat(k,:) = real(xnext);
end
assert(norm(imag(xhat)) <= 1e-6,'Predicted xhat has non-negligible imaginary part!');
xhat = real(xhat);
predictTime = toc;
if(obj.verbose)
fprintf('Predict() took %f seconds.\n',predictTime);
end
end
function F = GaussianKernel(Xin,Yin)
x = Xin./sqrt(obj.sigma2);
y = Yin./sqrt(obj.sigma2);
% each term is |xi - yj|^2. Expanding:
% |x-y|^2 = x'x - 2*x'y + y'y. these three lines are the three terms.
x2 = sum(x.^2,2); %x'x as a column vector
y2 = sum(Y.^2,2); %y'y as a column vector
XY = bsxfun(@minus, x2, (2*x)*y.'); % add 2x'y terms
total = bsxfun(@plus, y2.', XY); % add y'y terms
F = exp(-total)';
end
end
methods (Access = private)
function [processedData, scale, offset] = ScaleData(X,method)
% scale each column
scale = nan(1,size(X,2));
offset = nan(1,size(X,2));
processedData = nan(size(X));
for k = 1:size(X,2)
if method == "range" % scale everything to be between 0 and 1
xmin = min(X(:,k));
xmax = max(X(:,k));
scale(k) = xmax - xmin;
if(scale(k) < 1e-3) % all numbers are the same
scale(k) = xmax;
offset(k) = 0;
processedData(:,k) = ones(size(X,1),1);
else
% normal case
offset(k) = xmin;
end
elseif method == "zscore" % scale to fit standard normal (centered at zero, std deviation of 1)
scale(k) = std(X(:,k));
offset(k) = mean(X(:,k));
else
error('second argument "method" must be either ''range'' or ''zscore''.')
end
processedData(:,k) = (X(:,k) - offset(k))/scale(k);
end
end
end
end
%% convert hamlyn heart video to image sequence
% workingDir = tempname;
% mkdir(workingDir)
% mkdir(workingDir,'images')
%
% shuttleVideo = VideoReader('~/Downloads/hamlyn_heart.avi');
%
% ii = 1;
% while hasFrame(shuttleVideo)
% img = readFrame(shuttleVideo);
% filename = [sprintf('%03d',ii) '.jpg'];
% fullname = fullfile(workingDir,'images',filename);
% imwrite(img,fullname) % Write out to a JPEG file (img1.jpg, img2.jpg, etc.)
% ii = ii+1;
% end
%
% imageNames = dir(fullfile(workingDir,'images','*.jpg'));
% imageNames = {imageNames.name}';
%
%
% for ii = 1:length(imageNames)
% img = imread(fullfile(workingDir,'images',imageNames{ii}));
% grayImages(:,:,ii) = rgb2gray(img);
% end
%% Try DMD on it
clear variables
load ../data/HamlynHeartImages.mat;
disp('Data preparation...')
image_start = 1;% frame number to start from
num_images = 100;
allImages = [];
% for k = 1:size(grayImages,3)
for k = image_start:image_start+num_images
image_k = grayImages(:,:,k);
% allImages(:,k) = double(image_k(:));
allImages = [allImages, double(image_k(:))];
end
XallPrescaled = [allImages(:,2:end);
allImages(:,1:end-1)];
% XallPrescaled = allImages;
% remove constant rows which make XallPrescaled lose rank
[XallPrescaledProcessed,ProcessSettings] = removeconstantrows(XallPrescaled);
XallPrescaledProcessed = XallPrescaledProcessed';
disp('DMD Regression...')
%% kernel dmd
disp('Scaling data...')
[Xall,scaleFactor,scaleOffset] = ScaleData(XallPrescaledProcessed,'zscore'); % zscore may cause problems with body_length, which is constant
% Xall = XallPrescaledProcessed;
% scaleFactor = 1;
% scaleOffset = 0;
X = Xall(1:end-1,:);
X2 = Xall(2:end,:);
%% Kernel DMD
disp('Doing Kernel DMD...')
% kernel function
% inputs: x1, x2 are vectors of the same size.
% kernel = @(x1,x2) (1 + dot(x1,x2))^10; % polynomial kernel, doesnt work that well. often fails during reconstruction
sigma2 = 1e6; % 36 works well for noise = 1e-6. but so does 169. Noise dependent?
kernel = @(x1,x2) exp(-norm(x1-x2)^2/sigma2); % Gausssian kernel
% for j = 1:size(X,1)
% disp(j)
% for k = 1:size(X2,1)
% Ahat(j,k) = kernel(X(k,:),X2(j,:)); % Y'Y2 is Ahat in Williams et al.
% Ghat(j,k) = kernel(X(k,:),X(j,:)); % Y*Y is the Gramian Ghat in Williams et al.
% end
% end
Ahat = GaussianKernel(X,X2,sqrt(sigma2));
Ghat = GaussianKernel(X,X,sqrt(sigma2));
%%
% TODO: truncate to get low-order model.
% use Ghat to compute Sigma (called 'S') and V
% [Qfull,S2full] = eig(Ghat); % since it's true that Ghat*Q = Q*Sigma^2
tic;
[Qfull, S2full] = eigs(Ghat,size(Ghat,1),'largestabs','Tolerance',1e-19); % use increased tolerance with GaussianKernel
toc;
% S2full = flipud(fliplr(S2full)); % make largest singular values first instead of largest singular values last
% Qfull = fliplr(Qfull);
Sfull = sqrtm(S2full);
% truncate
% r = size(Ghat,1)-1; % number of dimensions to keep
r = floor(size(Ghat,1)/2);
Q = Qfull(:,1:r);
S = Sfull(1:r,1:r);
figure(2);
clf;
semilogy(diag(Sfull),'o');
hold on
semilogy(diag(S),'.');
% Sinv = diag(ones(size(S,1),1)./diag(S)); % better numerical stability?
% Khat = (Sinv*Q')*Ahat*(Q*Sinv);
Khat = (S\Q')*(Ahat)*(Q/S); % Khat, an approximation of the Koopman operator
[Vhat, Lambda] = eig(Khat);
if(rank(Vhat) < size(Vhat,1))
error('Vhat is not full rank (rank = %d). I didnt code up the case where Vhat isnt.', rank(Vhat));
end
Phi = Q*S*Vhat; % eigenfunctions of Khat
Xi = Phi\X;
X2hat = Phi*Lambda*Xi;
if(norm(imag(X2hat)) > 1e-3)
error('X2hat has non-negligible imaginary component.')
end
X2hat = real(X2hat); % this is quite an accurate reconstruction of X2.
disp('Finished computing kernel-DMD regression. Attempting simulation from IC.');
%% simulate forward
num_modes = size(Q,1); % i THINK this is the correct one
tic;
xhat(1,:) = X(1,:);
% xhat(1,1) = xhat(1,1) + 0.1;
% xhat(1,:) = xhat(1,:) + 0.001*randn(1,size(xhat,2));
for t = 2:2*size(X,1)
% calculate phi given x
prev_x = xhat(t-1,:);
% kernelmat = nan(1,num_modes);
% for M = 1:num_modes
% kernelmat(M) = kernel(prev_x,X(M,:));
% end
kernelmat = GaussianKernel(prev_x,X, sqrt(sigma2));
kernelmat = kernelmat(1:num_modes)';
phi_at_t = kernelmat*Q/S*Vhat;
% estimate
xnext = phi_at_t*Lambda*Xi;
if(norm(imag(xnext)) > 1e-3)
error('xnext isnt real (has non-negligble imaginary component)')
end
xhat(t,:) = real(xnext);
end
toc;
%% Check
figure(1)
clf
subplot(2,1,1)
plot(Xall(:,1));
hold on
plot([nan(1);X2hat(:,1)],'--');
plot(xhat(:,1),'--');
legend('true','1-step recon', 'n-step recon');
title('Reconstruction element 1')
subplot(2,1,2)
plot(Xall(:,6));
hold on
plot([nan(1);X2hat(:,6)],'--');
plot(xhat(:,6),'--');
legend('true','1-step recon', 'n-step recon');
title('Reconstruction element 6');
disp('Simulated from IC. Unscaling and casting data.');
%%
% offsetx = repmat(scaleOffset,size(xhat,1),1);
% reconstruction = xhat*diag(scaleFactor) + offsetx;
for k = 1:size(xhat,1)
xhatRescaled(k,:) = xhat(k,:).*scaleFactor + scaleOffset;
end
xhatRescaled = xhatRescaled';
xhatRescaled = removeconstantrows('reverse',xhatRescaled,ProcessSettings); % add removed rows back in.
% reconstruction = reshape(xhatRescaled,size(grayImages,1),size(grayImages,2),num_images);
for k = 1:size(xhatRescaled,2)
reconstruction(:,:,k) = reshape(xhatRescaled(1:size(allImages,1),k),size(grayImages,1),size(grayImages,2));
end
disp('Done.')
%% replay
reconsructionHdl = implay(uint8(reconstruction));
set(reconsructionHdl.Parent,'Name',sprintf('Reconstruction: %d modes, sigma2 = %.2e.',r,sigma2));
originalHdl = implay(grayImages(:,:,image_start:image_start+num_images));
set(originalHdl.Parent,'Name','Original data');
%%
% figure(3);
% clf
% mode_number = 1;
% % dont use uint8 and imshow, U0 is unitary so columns have very small
% % values
% singleMode = surf(flipud(reshape(Qfull(:,mode_number),size(grayImages,1),size(grayImages,2))),'LineStyle','none');
% % singleMode = surf(flipud(reshape(U0(:,mode_number),size(grayImages,1),size(grayImages,2))),'LineStyle','none');
% colormap(flipud(gray))
% modeEig = Lambda(mode_number,mode_number);
% title(sprintf('Mode %d, eig %.3f + %.3fi', mode_number, real(modeEig), imag(modeEig)));
% % view from above
% axis([0 360 -0.001 288 -1 0])
% view(0,90)
function F = GaussianKernel(Xin,Yin,sigma)
X = Xin./sigma;
Y = Yin./sigma;
% each term is |xi - yj|^2. Expanding:
% |x-y|^2 = x'x - 2*x'y + y'y. these three lines are the three terms.
X2 = sum(X.^2,2); %x'x as a column vector
Y2 = sum(Y.^2,2); %y'y as a column vector
XY = bsxfun(@minus, X2, (2*X)*Y.'); % add 2x'y terms
total = bsxfun(@plus, Y2.', XY); % add y'y terms
F = exp(-total)';
end
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment