diff --git a/logs/singularity_112883.out b/logs/singularity_112883.out new file mode 100644 index 0000000000000000000000000000000000000000..00467f9c51d06c69ce1f99e0e47a60961de6eb38 --- /dev/null +++ b/logs/singularity_112883.out @@ -0,0 +1,257 @@ +2023-12-01 17:35:50.608849: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations. +To enable the following instructions: AVX2 AVX512F FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags. +Using TensorFlow backend +Namespace(data_input='imu', feature_method='minirocket', lbl_str='pss', method='ml', model='cnn1d', overwrite=0, subject=-1, test_standing=1, train_len=5, win_shift=0.2, win_size=12) +Using pre-set data id: 0 +imu_rr_S01_id0_combi5.0-7.0-10.0-12.0-15.0 +train +(35921, 10) +test +(364536, 9) +minirocket transforming... +---CNN1D--- +2023-12-01 17:38:14.855542: I tensorflow/compiler/xla/stream_executor/cuda/cuda_gpu_executor.cc:995] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 +2023-12-01 17:38:17.263710: I tensorflow/compiler/xla/stream_executor/cuda/cuda_gpu_executor.cc:995] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 +2023-12-01 17:38:17.263947: I tensorflow/compiler/xla/stream_executor/cuda/cuda_gpu_executor.cc:995] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 +input shape: (1440, 9996) +x shape: (120, 9996) +2023-12-01 17:38:17.332217: I tensorflow/compiler/xla/stream_executor/cuda/cuda_gpu_executor.cc:995] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 +2023-12-01 17:38:17.332415: I tensorflow/compiler/xla/stream_executor/cuda/cuda_gpu_executor.cc:995] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 +2023-12-01 17:38:17.332573: I tensorflow/compiler/xla/stream_executor/cuda/cuda_gpu_executor.cc:995] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 +2023-12-01 17:38:33.186908: I tensorflow/compiler/xla/stream_executor/cuda/cuda_gpu_executor.cc:995] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 +2023-12-01 17:38:33.187141: I tensorflow/compiler/xla/stream_executor/cuda/cuda_gpu_executor.cc:995] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 +2023-12-01 17:38:33.187290: I tensorflow/compiler/xla/stream_executor/cuda/cuda_gpu_executor.cc:995] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 +2023-12-01 17:38:33.187409: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1639] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 14720 MB memory: -> device: 0, name: Quadro RTX 5000, pci bus id: 0000:0b:00.0, compute capability: 7.5 + +Search: Running Trial #1 + +Value |Best Value So Far |Hyperparameter +2 |2 |n_layers +128 |128 |filter_unit0 +64 |64 |filter_unit1 +3 |3 |kernel_size0 +2 |2 |kernel_size1 +4 |4 |pool_size0 +1 |1 |pool_size1 +2 |2 |stride_size0 +5 |5 |stride_size1 +0.1 |0.1 |dropout0 +0.3 |0.3 |dropout1 + +Traceback (most recent call last): + File "/home/rqchia/.local/lib/python3.8/site-packages/keras_tuner/src/engine/base_tuner.py", line 270, in _try_run_and_update_trial + self._run_and_update_trial(trial, *fit_args, **fit_kwargs) + File "/home/rqchia/.local/lib/python3.8/site-packages/keras_tuner/src/engine/base_tuner.py", line 235, in _run_and_update_trial + results = self.run_trial(trial, *fit_args, **fit_kwargs) + File "/home/rqchia/.local/lib/python3.8/site-packages/keras_tuner/src/engine/tuner.py", line 314, in run_trial + obj_value = self._build_and_fit_model(trial, *args, **copied_kwargs) + File "/home/rqchia/.local/lib/python3.8/site-packages/keras_tuner/src/engine/tuner.py", line 233, in _build_and_fit_model + results = self.hypermodel.fit(hp, model, *args, **kwargs) + File "/home/rqchia/projects/aria-respiration-cal/models/neuralnet.py", line 178, in fit + history = model.fit(x, y, + File "/home/rqchia/.local/lib/python3.8/site-packages/keras/src/utils/traceback_utils.py", line 70, in error_handler + raise e.with_traceback(filtered_tb) from None + File "/tmp/__autograph_generated_file6lza_nho.py", line 15, in tf__train_function + retval_ = ag__.converted_call(ag__.ld(step_function), (ag__.ld(self), ag__.ld(iterator)), None, fscope) +ValueError: in user code: + + File "/home/rqchia/.local/lib/python3.8/site-packages/keras/src/engine/training.py", line 1338, in train_function * + return step_function(self, iterator) + File "/home/rqchia/.local/lib/python3.8/site-packages/keras/src/engine/training.py", line 1322, in step_function ** + outputs = model.distribute_strategy.run(run_step, args=(data,)) + File "/home/rqchia/.local/lib/python3.8/site-packages/keras/src/engine/training.py", line 1303, in run_step ** + outputs = model.train_step(data) + File "/home/rqchia/.local/lib/python3.8/site-packages/keras/src/engine/training.py", line 1080, in train_step + y_pred = self(x, training=True) + File "/home/rqchia/.local/lib/python3.8/site-packages/keras/src/utils/traceback_utils.py", line 70, in error_handler + raise e.with_traceback(filtered_tb) from None + File "/home/rqchia/.local/lib/python3.8/site-packages/keras/src/engine/input_spec.py", line 253, in assert_input_compatibility + raise ValueError( + + ValueError: Exception encountered when calling layer 'cnn1d' (type Sequential). + + Input 0 of layer "conv1d_0" is incompatible with the layer: expected min_ndim=3, found ndim=2. Full shape received: (32, 9996) + + Call arguments received by layer 'cnn1d' (type Sequential): + • inputs=tf.Tensor(shape=(32, 9996), dtype=float32) + • training=True + • mask=None + +[2K [2K Trial 1 Complete [00h 00m 02s] + +Best val_loss So Far: None +Total elapsed time: 00h 00m 02s + +Search: Running Trial #2 + +Value |Best Value So Far |Hyperparameter +1 |2 |n_layers +64 |128 |filter_unit0 +1 |3 |kernel_size0 +1 |4 |pool_size0 +2 |2 |stride_size0 +0.1 |0.1 |dropout0 + +Traceback (most recent call last): + File "/home/rqchia/.local/lib/python3.8/site-packages/keras_tuner/src/engine/base_tuner.py", line 270, in _try_run_and_update_trial + self._run_and_update_trial(trial, *fit_args, **fit_kwargs) + File "/home/rqchia/.local/lib/python3.8/site-packages/keras_tuner/src/engine/base_tuner.py", line 235, in _run_and_update_trial + results = self.run_trial(trial, *fit_args, **fit_kwargs) + File "/home/rqchia/.local/lib/python3.8/site-packages/keras_tuner/src/engine/tuner.py", line 314, in run_trial + obj_value = self._build_and_fit_model(trial, *args, **copied_kwargs) + File "/home/rqchia/.local/lib/python3.8/site-packages/keras_tuner/src/engine/tuner.py", line 233, in _build_and_fit_model + results = self.hypermodel.fit(hp, model, *args, **kwargs) + File "/home/rqchia/projects/aria-respiration-cal/models/neuralnet.py", line 178, in fit + history = model.fit(x, y, + File "/home/rqchia/.local/lib/python3.8/site-packages/keras/src/utils/traceback_utils.py", line 70, in error_handler + raise e.with_traceback(filtered_tb) from None + File "/tmp/__autograph_generated_file6lza_nho.py", line 15, in tf__train_function + retval_ = ag__.converted_call(ag__.ld(step_function), (ag__.ld(self), ag__.ld(iterator)), None, fscope) +ValueError: in user code: + + File "/home/rqchia/.local/lib/python3.8/site-packages/keras/src/engine/training.py", line 1338, in train_function * + return step_function(self, iterator) + File "/home/rqchia/.local/lib/python3.8/site-packages/keras/src/engine/training.py", line 1322, in step_function ** + outputs = model.distribute_strategy.run(run_step, args=(data,)) + File "/home/rqchia/.local/lib/python3.8/site-packages/keras/src/engine/training.py", line 1303, in run_step ** + outputs = model.train_step(data) + File "/home/rqchia/.local/lib/python3.8/site-packages/keras/src/engine/training.py", line 1080, in train_step + y_pred = self(x, training=True) + File "/home/rqchia/.local/lib/python3.8/site-packages/keras/src/utils/traceback_utils.py", line 70, in error_handler + raise e.with_traceback(filtered_tb) from None + File "/home/rqchia/.local/lib/python3.8/site-packages/keras/src/engine/input_spec.py", line 253, in assert_input_compatibility + raise ValueError( + + ValueError: Exception encountered when calling layer 'cnn1d' (type Sequential). + + Input 0 of layer "conv1d_0" is incompatible with the layer: expected min_ndim=3, found ndim=2. Full shape received: (32, 9996) + + Call arguments received by layer 'cnn1d' (type Sequential): + • inputs=tf.Tensor(shape=(32, 9996), dtype=float32) + • training=True + • mask=None + +[2K [2K Trial 2 Complete [00h 00m 00s] + +Best val_loss So Far: None +Total elapsed time: 00h 00m 02s + +Search: Running Trial #3 + +Value |Best Value So Far |Hyperparameter +3 |2 |n_layers +64 |128 |filter_unit0 +64 |64 |filter_unit1 +32 |None |filter_unit2 +1 |3 |kernel_size0 +4 |2 |kernel_size1 +4 |None |kernel_size2 +2 |4 |pool_size0 +5 |1 |pool_size1 +4 |None |pool_size2 +4 |2 |stride_size0 +1 |5 |stride_size1 +3 |None |stride_size2 +0.2 |0.1 |dropout0 +0 |0.3 |dropout1 +0 |None |dropout2 + +Traceback (most recent call last): + File "/home/rqchia/.local/lib/python3.8/site-packages/keras_tuner/src/engine/base_tuner.py", line 270, in _try_run_and_update_trial + self._run_and_update_trial(trial, *fit_args, **fit_kwargs) + File "/home/rqchia/.local/lib/python3.8/site-packages/keras_tuner/src/engine/base_tuner.py", line 235, in _run_and_update_trial + results = self.run_trial(trial, *fit_args, **fit_kwargs) + File "/home/rqchia/.local/lib/python3.8/site-packages/keras_tuner/src/engine/tuner.py", line 314, in run_trial + obj_value = self._build_and_fit_model(trial, *args, **copied_kwargs) + File "/home/rqchia/.local/lib/python3.8/site-packages/keras_tuner/src/engine/tuner.py", line 233, in _build_and_fit_model + results = self.hypermodel.fit(hp, model, *args, **kwargs) + File "/home/rqchia/projects/aria-respiration-cal/models/neuralnet.py", line 178, in fit + history = model.fit(x, y, + File "/home/rqchia/.local/lib/python3.8/site-packages/keras/src/utils/traceback_utils.py", line 70, in error_handler + raise e.with_traceback(filtered_tb) from None + File "/tmp/__autograph_generated_file6lza_nho.py", line 15, in tf__train_function + retval_ = ag__.converted_call(ag__.ld(step_function), (ag__.ld(self), ag__.ld(iterator)), None, fscope) +ValueError: in user code: + + File "/home/rqchia/.local/lib/python3.8/site-packages/keras/src/engine/training.py", line 1338, in train_function * + return step_function(self, iterator) + File "/home/rqchia/.local/lib/python3.8/site-packages/keras/src/engine/training.py", line 1322, in step_function ** + outputs = model.distribute_strategy.run(run_step, args=(data,)) + File "/home/rqchia/.local/lib/python3.8/site-packages/keras/src/engine/training.py", line 1303, in run_step ** + outputs = model.train_step(data) + File "/home/rqchia/.local/lib/python3.8/site-packages/keras/src/engine/training.py", line 1080, in train_step + y_pred = self(x, training=True) + File "/home/rqchia/.local/lib/python3.8/site-packages/keras/src/utils/traceback_utils.py", line 70, in error_handler + raise e.with_traceback(filtered_tb) from None + File "/home/rqchia/.local/lib/python3.8/site-packages/keras/src/engine/input_spec.py", line 253, in assert_input_compatibility + raise ValueError( + + ValueError: Exception encountered when calling layer 'cnn1d' (type Sequential). + + Input 0 of layer "conv1d_0" is incompatible with the layer: expected min_ndim=3, found ndim=2. Full shape received: (32, 9996) + + Call arguments received by layer 'cnn1d' (type Sequential): + • inputs=tf.Tensor(shape=(32, 9996), dtype=float32) + • training=True + • mask=None + +Traceback (most recent call last): + File "regress_rr.py", line 1521, in <module> + rr_func(subject) + File "regress_rr.py", line 1369, in sens_rr_model + transforms, model = model_training(mdl_str, x_train, y_train, + File "/home/rqchia/projects/aria-respiration-cal/modules/utils.py", line 260, in model_training + tuner.search(x_train, y_train, validation_data, + File "/home/rqchia/projects/aria-respiration-cal/models/neuralnet.py", line 499, in search + self.tuner.search(x, y, validation_data, + File "/home/rqchia/.local/lib/python3.8/site-packages/keras_tuner/src/engine/base_tuner.py", line 231, in search + self.on_trial_end(trial) + File "/home/rqchia/.local/lib/python3.8/site-packages/keras_tuner/src/engine/base_tuner.py", line 335, in on_trial_end + self.oracle.end_trial(trial) + File "/home/rqchia/.local/lib/python3.8/site-packages/keras_tuner/src/engine/oracle.py", line 107, in wrapped_func + ret_val = func(*args, **kwargs) + File "/home/rqchia/.local/lib/python3.8/site-packages/keras_tuner/src/engine/oracle.py", line 429, in end_trial + self._check_consecutive_failures() + File "/home/rqchia/.local/lib/python3.8/site-packages/keras_tuner/src/engine/oracle.py", line 386, in _check_consecutive_failures + raise RuntimeError( +RuntimeError: Number of consecutive failures exceeded the limit of 3. +Traceback (most recent call last): + File "/home/rqchia/.local/lib/python3.8/site-packages/keras_tuner/src/engine/base_tuner.py", line 270, in _try_run_and_update_trial + self._run_and_update_trial(trial, *fit_args, **fit_kwargs) + File "/home/rqchia/.local/lib/python3.8/site-packages/keras_tuner/src/engine/base_tuner.py", line 235, in _run_and_update_trial + results = self.run_trial(trial, *fit_args, **fit_kwargs) + File "/home/rqchia/.local/lib/python3.8/site-packages/keras_tuner/src/engine/tuner.py", line 314, in run_trial + obj_value = self._build_and_fit_model(trial, *args, **copied_kwargs) + File "/home/rqchia/.local/lib/python3.8/site-packages/keras_tuner/src/engine/tuner.py", line 233, in _build_and_fit_model + results = self.hypermodel.fit(hp, model, *args, **kwargs) + File "/home/rqchia/projects/aria-respiration-cal/models/neuralnet.py", line 178, in fit + history = model.fit(x, y, + File "/home/rqchia/.local/lib/python3.8/site-packages/keras/src/utils/traceback_utils.py", line 70, in error_handler + raise e.with_traceback(filtered_tb) from None + File "/tmp/__autograph_generated_file6lza_nho.py", line 15, in tf__train_function + retval_ = ag__.converted_call(ag__.ld(step_function), (ag__.ld(self), ag__.ld(iterator)), None, fscope) +ValueError: in user code: + + File "/home/rqchia/.local/lib/python3.8/site-packages/keras/src/engine/training.py", line 1338, in train_function * + return step_function(self, iterator) + File "/home/rqchia/.local/lib/python3.8/site-packages/keras/src/engine/training.py", line 1322, in step_function ** + outputs = model.distribute_strategy.run(run_step, args=(data,)) + File "/home/rqchia/.local/lib/python3.8/site-packages/keras/src/engine/training.py", line 1303, in run_step ** + outputs = model.train_step(data) + File "/home/rqchia/.local/lib/python3.8/site-packages/keras/src/engine/training.py", line 1080, in train_step + y_pred = self(x, training=True) + File "/home/rqchia/.local/lib/python3.8/site-packages/keras/src/utils/traceback_utils.py", line 70, in error_handler + raise e.with_traceback(filtered_tb) from None + File "/home/rqchia/.local/lib/python3.8/site-packages/keras/src/engine/input_spec.py", line 253, in assert_input_compatibility + raise ValueError( + + ValueError: Exception encountered when calling layer 'cnn1d' (type Sequential). + + Input 0 of layer "conv1d_0" is incompatible with the layer: expected min_ndim=3, found ndim=2. Full shape received: (32, 9996) + + Call arguments received by layer 'cnn1d' (type Sequential): + • inputs=tf.Tensor(shape=(32, 9996), dtype=float32) + • training=True + • mask=None + + diff --git a/logs/singularity_125871.out b/logs/singularity_125871.out new file mode 100644 index 0000000000000000000000000000000000000000..3847aad8d6110c134b251d04623582b0bbede86c --- /dev/null +++ b/logs/singularity_125871.out @@ -0,0 +1,1024 @@ +2023-12-01 17:47:19.486948: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations. +To enable the following instructions: AVX2 AVX512F FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags. +Using TensorFlow backend +Namespace(data_input='imu', feature_method='None', lbl_str='pss', method='ml', model='cnn1d', overwrite=0, subject=-1, test_standing=1, train_len=5, win_shift=0.2, win_size=12) +Using pre-set data id: 1 +imu_rr_S01_id1_combi5.0-7.0-10.0-12.0-15.0 +train +(35921, 10) +test +(364536, 9) +---CNN1D--- +2023-12-01 17:47:58.815959: I tensorflow/compiler/xla/stream_executor/cuda/cuda_gpu_executor.cc:995] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 +2023-12-01 17:47:59.153444: I tensorflow/compiler/xla/stream_executor/cuda/cuda_gpu_executor.cc:995] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 +2023-12-01 17:47:59.153684: I tensorflow/compiler/xla/stream_executor/cuda/cuda_gpu_executor.cc:995] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 +input shape: (1440, 6) +x shape: (120, 1440, 6) +Reloading Tuner from /projects/CIBCIGroup/00DataUploading/rqchia/aria-respiration-cal/subject_specific/S01/imu_rr/01/cnn1d_imu_rr_S01_id1_combi5.0-7.0-10.0-12.0-15.0/bayesianoptimization/tuner0.json +{'n_layers': 1, 'filter_unit0': 128, 'kernel_size0': 2, 'pool_size0': 2, 'stride_size0': 1, 'dropout0': 0.0} +2023-12-01 17:47:59.211624: I tensorflow/compiler/xla/stream_executor/cuda/cuda_gpu_executor.cc:995] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 +2023-12-01 17:47:59.211829: I tensorflow/compiler/xla/stream_executor/cuda/cuda_gpu_executor.cc:995] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 +2023-12-01 17:47:59.211969: I tensorflow/compiler/xla/stream_executor/cuda/cuda_gpu_executor.cc:995] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 +2023-12-01 17:47:59.710395: I tensorflow/compiler/xla/stream_executor/cuda/cuda_gpu_executor.cc:995] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 +2023-12-01 17:47:59.710640: I tensorflow/compiler/xla/stream_executor/cuda/cuda_gpu_executor.cc:995] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 +2023-12-01 17:47:59.710784: I tensorflow/compiler/xla/stream_executor/cuda/cuda_gpu_executor.cc:995] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355 +2023-12-01 17:47:59.710905: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1639] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 14720 MB memory: -> device: 0, name: Quadro RTX 5000, pci bus id: 0000:0b:00.0, compute capability: 7.5 +2023-12-01 17:48:29.990747: I tensorflow/compiler/xla/stream_executor/cuda/cuda_dnn.cc:432] Loaded cuDNN version 8600 + 1/39 [..............................] - ETA: 32:04 23/39 [================>.............] - ETA: 0s 39/39 [==============================] - 51s 3ms/step + subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval +0 S01 0 linreg ... -9.864563 0.038776 3.649402e-01 +1 S01 0 linreg ... -11.875765 0.070097 1.011711e-01 +2 S01 0 linreg ... -11.069278 0.047023 2.718220e-01 +3 S01 0 linreg ... -25.345517 0.016892 6.931765e-01 +4 S01 0 linreg ... -15.299470 0.118749 5.380273e-03 +.. ... ... ... ... ... ... ... +711 S06 0 linreg ... -2.382225 -0.203053 1.316660e-10 +712 S06 0 linreg ... -2.299251 -0.189599 2.081305e-09 +713 S06 0 linreg ... -2.151206 -0.211608 2.054503e-11 +714 S06 0 linreg ... -2.041921 -0.177991 1.928055e-08 +715 S06 0 linreg ... -0.976966 -0.195415 6.463433e-10 + +[716 rows x 18 columns] +QStandardPaths: XDG_RUNTIME_DIR points to non-existing path '/run/user/56779', please create it with 0700 permissions. +imu_rr_S01_id1_combi5.0-7.0-10.0-12.0-17.0 +train +(35921, 10) +test +(364536, 9) +---CNN1D--- +input shape: (1440, 6) +x shape: (115, 1440, 6) +Reloading Tuner from /projects/CIBCIGroup/00DataUploading/rqchia/aria-respiration-cal/subject_specific/S01/imu_rr/01/cnn1d_imu_rr_S01_id1_combi5.0-7.0-10.0-12.0-17.0/bayesianoptimization/tuner0.json +{'n_layers': 1, 'filter_unit0': 64, 'kernel_size0': 3, 'pool_size0': 2, 'stride_size0': 3, 'dropout0': 0.4} + 1/39 [..............................] - ETA: 5s 39/39 [==============================] - ETA: 0s 39/39 [==============================] - 0s 2ms/step + subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval +0 S01 0 linreg ... -9.864563 0.038776 3.649402e-01 +1 S01 0 linreg ... -11.875765 0.070097 1.011711e-01 +2 S01 0 linreg ... -11.069278 0.047023 2.718220e-01 +3 S01 0 linreg ... -25.345517 0.016892 6.931765e-01 +4 S01 0 linreg ... -15.299470 0.118749 5.380273e-03 +.. ... ... ... ... ... ... ... +711 S06 0 linreg ... -2.382225 -0.203053 1.316660e-10 +712 S06 0 linreg ... -2.299251 -0.189599 2.081305e-09 +713 S06 0 linreg ... -2.151206 -0.211608 2.054503e-11 +714 S06 0 linreg ... -2.041921 -0.177991 1.928055e-08 +715 S06 0 linreg ... -0.976966 -0.195415 6.463433e-10 + +[716 rows x 18 columns] +imu_rr_S01_id1_combi5.0-7.0-10.0-12.0-20.0 +train +(35921, 10) +test +(364536, 9) +WARNING:tensorflow:Detecting that an object or model or tf.train.Checkpoint is being deleted with unrestored values. See the following logs for the specific values in question. To silence these warnings, use `status.expect_partial()`. See https://www.tensorflow.org/api_docs/python/tf/train/Checkpoint#restorefor details about the status object returned by the restore function. +Detecting that an object or model or tf.train.Checkpoint is being deleted with unrestored values. See the following logs for the specific values in question. To silence these warnings, use `status.expect_partial()`. See https://www.tensorflow.org/api_docs/python/tf/train/Checkpoint#restorefor details about the status object returned by the restore function. +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.1 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.1 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.2 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.2 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.3 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.3 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.4 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.4 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.5 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.5 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.6 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.6 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.7 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.7 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.8 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.8 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.9 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.9 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.10 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.10 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.11 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.11 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.12 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.12 +---CNN1D--- +input shape: (1440, 6) +x shape: (115, 1440, 6) +Reloading Tuner from /projects/CIBCIGroup/00DataUploading/rqchia/aria-respiration-cal/subject_specific/S01/imu_rr/01/cnn1d_imu_rr_S01_id1_combi5.0-7.0-10.0-12.0-20.0/bayesianoptimization/tuner0.json +{'n_layers': 1, 'filter_unit0': 32, 'kernel_size0': 4, 'pool_size0': 3, 'stride_size0': 1, 'dropout0': 0.4} + 1/39 [..............................] - ETA: 5s 39/39 [==============================] - ETA: 0s 39/39 [==============================] - 0s 2ms/step + subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval +0 S01 0 linreg ... -9.864563 0.038776 3.649402e-01 +1 S01 0 linreg ... -11.875765 0.070097 1.011711e-01 +2 S01 0 linreg ... -11.069278 0.047023 2.718220e-01 +3 S01 0 linreg ... -25.345517 0.016892 6.931765e-01 +4 S01 0 linreg ... -15.299470 0.118749 5.380273e-03 +.. ... ... ... ... ... ... ... +711 S06 0 linreg ... -2.382225 -0.203053 1.316660e-10 +712 S06 0 linreg ... -2.299251 -0.189599 2.081305e-09 +713 S06 0 linreg ... -2.151206 -0.211608 2.054503e-11 +714 S06 0 linreg ... -2.041921 -0.177991 1.928055e-08 +715 S06 0 linreg ... -0.976966 -0.195415 6.463433e-10 + +[716 rows x 18 columns] +imu_rr_S01_id1_combi5.0-7.0-10.0-15.0-17.0 +train +(35921, 10) +test +(364536, 9) +---CNN1D--- +input shape: (1440, 6) +x shape: (115, 1440, 6) +Reloading Tuner from /projects/CIBCIGroup/00DataUploading/rqchia/aria-respiration-cal/subject_specific/S01/imu_rr/01/cnn1d_imu_rr_S01_id1_combi5.0-7.0-10.0-15.0-17.0/bayesianoptimization/tuner0.json +{'n_layers': 2, 'filter_unit0': 128, 'filter_unit1': 128, 'kernel_size0': 1, 'kernel_size1': 3, 'pool_size0': 5, 'pool_size1': 2, 'stride_size0': 4, 'stride_size1': 3, 'dropout0': 0.1, 'dropout1': 0.30000000000000004} + 1/39 [..............................] - ETA: 9s 24/39 [=================>............] - ETA: 0s 39/39 [==============================] - ETA: 0s 39/39 [==============================] - 0s 3ms/step + subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval +0 S01 0 linreg ... -9.864563 0.038776 3.649402e-01 +1 S01 0 linreg ... -11.875765 0.070097 1.011711e-01 +2 S01 0 linreg ... -11.069278 0.047023 2.718220e-01 +3 S01 0 linreg ... -25.345517 0.016892 6.931765e-01 +4 S01 0 linreg ... -15.299470 0.118749 5.380273e-03 +.. ... ... ... ... ... ... ... +711 S06 0 linreg ... -2.382225 -0.203053 1.316660e-10 +712 S06 0 linreg ... -2.299251 -0.189599 2.081305e-09 +713 S06 0 linreg ... -2.151206 -0.211608 2.054503e-11 +714 S06 0 linreg ... -2.041921 -0.177991 1.928055e-08 +715 S06 0 linreg ... -0.976966 -0.195415 6.463433e-10 + +[716 rows x 18 columns] +imu_rr_S01_id1_combi5.0-7.0-10.0-15.0-20.0 +train +(35921, 10) +test +(364536, 9) +---CNN1D--- +input shape: (1440, 6) +x shape: (110, 1440, 6) +Reloading Tuner from /projects/CIBCIGroup/00DataUploading/rqchia/aria-respiration-cal/subject_specific/S01/imu_rr/01/cnn1d_imu_rr_S01_id1_combi5.0-7.0-10.0-15.0-20.0/bayesianoptimization/tuner0.json +{'n_layers': 1, 'filter_unit0': 64, 'kernel_size0': 2, 'pool_size0': 5, 'stride_size0': 3, 'dropout0': 0.1} + 1/39 [..............................] - ETA: 5s 39/39 [==============================] - ETA: 0s 39/39 [==============================] - 0s 2ms/step + subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval +0 S01 0 linreg ... -9.864563 0.038776 3.649402e-01 +1 S01 0 linreg ... -11.875765 0.070097 1.011711e-01 +2 S01 0 linreg ... -11.069278 0.047023 2.718220e-01 +3 S01 0 linreg ... -25.345517 0.016892 6.931765e-01 +4 S01 0 linreg ... -15.299470 0.118749 5.380273e-03 +.. ... ... ... ... ... ... ... +711 S06 0 linreg ... -2.382225 -0.203053 1.316660e-10 +712 S06 0 linreg ... -2.299251 -0.189599 2.081305e-09 +713 S06 0 linreg ... -2.151206 -0.211608 2.054503e-11 +714 S06 0 linreg ... -2.041921 -0.177991 1.928055e-08 +715 S06 0 linreg ... -0.976966 -0.195415 6.463433e-10 + +[716 rows x 18 columns] +imu_rr_S01_id1_combi5.0-7.0-10.0-17.0-20.0 +train +(35921, 10) +test +(364536, 9) +WARNING:tensorflow:Detecting that an object or model or tf.train.Checkpoint is being deleted with unrestored values. See the following logs for the specific values in question. To silence these warnings, use `status.expect_partial()`. See https://www.tensorflow.org/api_docs/python/tf/train/Checkpoint#restorefor details about the status object returned by the restore function. +Detecting that an object or model or tf.train.Checkpoint is being deleted with unrestored values. See the following logs for the specific values in question. To silence these warnings, use `status.expect_partial()`. See https://www.tensorflow.org/api_docs/python/tf/train/Checkpoint#restorefor details about the status object returned by the restore function. +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.1 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.1 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.2 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.2 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.3 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.3 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.4 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.4 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.5 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.5 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.6 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.6 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.7 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.7 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.8 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.8 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.9 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.9 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.10 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.10 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.11 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.11 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.12 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.12 +WARNING:tensorflow:Detecting that an object or model or tf.train.Checkpoint is being deleted with unrestored values. See the following logs for the specific values in question. To silence these warnings, use `status.expect_partial()`. See https://www.tensorflow.org/api_docs/python/tf/train/Checkpoint#restorefor details about the status object returned by the restore function. +Detecting that an object or model or tf.train.Checkpoint is being deleted with unrestored values. See the following logs for the specific values in question. To silence these warnings, use `status.expect_partial()`. See https://www.tensorflow.org/api_docs/python/tf/train/Checkpoint#restorefor details about the status object returned by the restore function. +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.1 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.1 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.2 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.2 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.3 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.3 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.4 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.4 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.5 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.5 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.6 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.6 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.7 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.7 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.8 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.8 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.9 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.9 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.10 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.10 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.11 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.11 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.12 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.12 +WARNING:tensorflow:Detecting that an object or model or tf.train.Checkpoint is being deleted with unrestored values. See the following logs for the specific values in question. To silence these warnings, use `status.expect_partial()`. See https://www.tensorflow.org/api_docs/python/tf/train/Checkpoint#restorefor details about the status object returned by the restore function. +Detecting that an object or model or tf.train.Checkpoint is being deleted with unrestored values. See the following logs for the specific values in question. To silence these warnings, use `status.expect_partial()`. See https://www.tensorflow.org/api_docs/python/tf/train/Checkpoint#restorefor details about the status object returned by the restore function. +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.1 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.1 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.2 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.2 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.3 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.3 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.4 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.4 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.5 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.5 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.6 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.6 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.7 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.7 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.8 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.8 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.9 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.9 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.10 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.10 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.11 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.11 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.12 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.12 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.13 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.13 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.14 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.14 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.15 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.15 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.16 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.16 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.17 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.17 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.18 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.18 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.19 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.19 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.20 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.20 +---CNN1D--- +input shape: (1440, 6) +x shape: (115, 1440, 6) +Reloading Tuner from /projects/CIBCIGroup/00DataUploading/rqchia/aria-respiration-cal/subject_specific/S01/imu_rr/01/cnn1d_imu_rr_S01_id1_combi5.0-7.0-10.0-17.0-20.0/bayesianoptimization/tuner0.json +{'n_layers': 1, 'filter_unit0': 128, 'kernel_size0': 1, 'pool_size0': 3, 'stride_size0': 1, 'dropout0': 0.1} + 1/39 [..............................] - ETA: 5s 27/39 [===================>..........] - ETA: 0s 39/39 [==============================] - 0s 2ms/step + subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval +0 S01 0 linreg ... -9.864563 0.038776 3.649402e-01 +1 S01 0 linreg ... -11.875765 0.070097 1.011711e-01 +2 S01 0 linreg ... -11.069278 0.047023 2.718220e-01 +3 S01 0 linreg ... -25.345517 0.016892 6.931765e-01 +4 S01 0 linreg ... -15.299470 0.118749 5.380273e-03 +.. ... ... ... ... ... ... ... +711 S06 0 linreg ... -2.382225 -0.203053 1.316660e-10 +712 S06 0 linreg ... -2.299251 -0.189599 2.081305e-09 +713 S06 0 linreg ... -2.151206 -0.211608 2.054503e-11 +714 S06 0 linreg ... -2.041921 -0.177991 1.928055e-08 +715 S06 0 linreg ... -0.976966 -0.195415 6.463433e-10 + +[716 rows x 18 columns] +imu_rr_S01_id1_combi5.0-7.0-12.0-15.0-17.0 +train +(35921, 10) +test +(364536, 9) +---CNN1D--- +input shape: (1440, 6) +x shape: (115, 1440, 6) +Reloading Tuner from /projects/CIBCIGroup/00DataUploading/rqchia/aria-respiration-cal/subject_specific/S01/imu_rr/01/cnn1d_imu_rr_S01_id1_combi5.0-7.0-12.0-15.0-17.0/bayesianoptimization/tuner0.json +{'n_layers': 4, 'filter_unit0': 256, 'filter_unit1': 64, 'filter_unit2': 64, 'filter_unit3': 256, 'kernel_size0': 3, 'kernel_size1': 4, 'kernel_size2': 5, 'kernel_size3': 5, 'pool_size0': 2, 'pool_size1': 5, 'pool_size2': 5, 'pool_size3': 3, 'stride_size0': 4, 'stride_size1': 5, 'stride_size2': 3, 'stride_size3': 2, 'dropout0': 0.2, 'dropout1': 0.4, 'dropout2': 0.1, 'dropout3': 0.4} + 1/39 [..............................] - ETA: 17s 16/39 [===========>..................] - ETA: 0s 31/39 [======================>.......] - ETA: 0s 39/39 [==============================] - ETA: 0s 39/39 [==============================] - 1s 5ms/step + subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval +0 S01 0 linreg ... -9.864563 0.038776 3.649402e-01 +1 S01 0 linreg ... -11.875765 0.070097 1.011711e-01 +2 S01 0 linreg ... -11.069278 0.047023 2.718220e-01 +3 S01 0 linreg ... -25.345517 0.016892 6.931765e-01 +4 S01 0 linreg ... -15.299470 0.118749 5.380273e-03 +.. ... ... ... ... ... ... ... +711 S06 0 linreg ... -2.382225 -0.203053 1.316660e-10 +712 S06 0 linreg ... -2.299251 -0.189599 2.081305e-09 +713 S06 0 linreg ... -2.151206 -0.211608 2.054503e-11 +714 S06 0 linreg ... -2.041921 -0.177991 1.928055e-08 +715 S06 0 linreg ... -0.976966 -0.195415 6.463433e-10 + +[716 rows x 18 columns] +imu_rr_S01_id1_combi5.0-7.0-12.0-15.0-20.0 +train +(35921, 10) +test +(364536, 9) +---CNN1D--- +input shape: (1440, 6) +x shape: (110, 1440, 6) +Reloading Tuner from /projects/CIBCIGroup/00DataUploading/rqchia/aria-respiration-cal/subject_specific/S01/imu_rr/01/cnn1d_imu_rr_S01_id1_combi5.0-7.0-12.0-15.0-20.0/bayesianoptimization/tuner0.json +{'n_layers': 1, 'filter_unit0': 64, 'kernel_size0': 4, 'pool_size0': 1, 'stride_size0': 2, 'dropout0': 0.30000000000000004} + 1/39 [..............................] - ETA: 5s 37/39 [===========================>..] - ETA: 0s 39/39 [==============================] - 0s 2ms/step + subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval +0 S01 0 linreg ... -9.864563 0.038776 3.649402e-01 +1 S01 0 linreg ... -11.875765 0.070097 1.011711e-01 +2 S01 0 linreg ... -11.069278 0.047023 2.718220e-01 +3 S01 0 linreg ... -25.345517 0.016892 6.931765e-01 +4 S01 0 linreg ... -15.299470 0.118749 5.380273e-03 +.. ... ... ... ... ... ... ... +711 S06 0 linreg ... -2.382225 -0.203053 1.316660e-10 +712 S06 0 linreg ... -2.299251 -0.189599 2.081305e-09 +713 S06 0 linreg ... -2.151206 -0.211608 2.054503e-11 +714 S06 0 linreg ... -2.041921 -0.177991 1.928055e-08 +715 S06 0 linreg ... -0.976966 -0.195415 6.463433e-10 + +[716 rows x 18 columns] +imu_rr_S01_id1_combi5.0-7.0-12.0-17.0-20.0 +train +(35921, 10) +test +(364536, 9) +---CNN1D--- +input shape: (1440, 6) +x shape: (110, 1440, 6) +Reloading Tuner from /projects/CIBCIGroup/00DataUploading/rqchia/aria-respiration-cal/subject_specific/S01/imu_rr/01/cnn1d_imu_rr_S01_id1_combi5.0-7.0-12.0-17.0-20.0/bayesianoptimization/tuner0.json +{'n_layers': 1, 'filter_unit0': 32, 'kernel_size0': 5, 'pool_size0': 2, 'stride_size0': 1, 'dropout0': 0.30000000000000004} + 1/39 [..............................] - ETA: 7s 39/39 [==============================] - ETA: 0s 39/39 [==============================] - 0s 2ms/step + subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval +0 S01 0 linreg ... -9.864563 0.038776 3.649402e-01 +1 S01 0 linreg ... -11.875765 0.070097 1.011711e-01 +2 S01 0 linreg ... -11.069278 0.047023 2.718220e-01 +3 S01 0 linreg ... -25.345517 0.016892 6.931765e-01 +4 S01 0 linreg ... -15.299470 0.118749 5.380273e-03 +.. ... ... ... ... ... ... ... +711 S06 0 linreg ... -2.382225 -0.203053 1.316660e-10 +712 S06 0 linreg ... -2.299251 -0.189599 2.081305e-09 +713 S06 0 linreg ... -2.151206 -0.211608 2.054503e-11 +714 S06 0 linreg ... -2.041921 -0.177991 1.928055e-08 +715 S06 0 linreg ... -0.976966 -0.195415 6.463433e-10 + +[716 rows x 18 columns] +WARNING:tensorflow:Detecting that an object or model or tf.train.Checkpoint is being deleted with unrestored values. See the following logs for the specific values in question. To silence these warnings, use `status.expect_partial()`. See https://www.tensorflow.org/api_docs/python/tf/train/Checkpoint#restorefor details about the status object returned by the restore function. +Detecting that an object or model or tf.train.Checkpoint is being deleted with unrestored values. See the following logs for the specific values in question. To silence these warnings, use `status.expect_partial()`. See https://www.tensorflow.org/api_docs/python/tf/train/Checkpoint#restorefor details about the status object returned by the restore function. +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.1 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.1 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.2 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.2 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.3 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.3 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.4 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.4 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.5 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.5 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.6 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.6 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.7 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.7 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.8 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.8 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.9 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.9 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.10 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.10 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.11 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.11 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.12 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.12 +WARNING:tensorflow:Detecting that an object or model or tf.train.Checkpoint is being deleted with unrestored values. See the following logs for the specific values in question. To silence these warnings, use `status.expect_partial()`. See https://www.tensorflow.org/api_docs/python/tf/train/Checkpoint#restorefor details about the status object returned by the restore function. +Detecting that an object or model or tf.train.Checkpoint is being deleted with unrestored values. See the following logs for the specific values in question. To silence these warnings, use `status.expect_partial()`. See https://www.tensorflow.org/api_docs/python/tf/train/Checkpoint#restorefor details about the status object returned by the restore function. +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.1 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.1 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.2 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.2 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.3 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.3 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.4 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.4 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.5 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.5 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.6 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.6 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.7 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.7 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.8 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.8 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.9 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.9 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.10 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.10 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.11 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.11 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.12 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.12 +WARNING:tensorflow:Detecting that an object or model or tf.train.Checkpoint is being deleted with unrestored values. See the following logs for the specific values in question. To silence these warnings, use `status.expect_partial()`. See https://www.tensorflow.org/api_docs/python/tf/train/Checkpoint#restorefor details about the status object returned by the restore function. +Detecting that an object or model or tf.train.Checkpoint is being deleted with unrestored values. See the following logs for the specific values in question. To silence these warnings, use `status.expect_partial()`. See https://www.tensorflow.org/api_docs/python/tf/train/Checkpoint#restorefor details about the status object returned by the restore function. +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.1 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.1 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.2 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.2 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.3 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.3 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.4 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.4 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.5 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.5 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.6 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.6 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.7 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.7 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.8 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.8 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.9 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.9 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.10 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.10 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.11 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.11 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.12 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.12 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.13 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.13 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.14 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.14 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.15 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.15 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.16 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.16 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.17 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.17 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.18 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.18 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.19 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.19 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.20 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.20 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.21 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.21 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.22 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.22 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.23 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.23 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.24 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.24 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.25 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.25 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.26 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.26 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.27 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.27 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.28 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.28 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.29 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.29 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.30 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.30 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.31 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.31 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.32 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.32 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.33 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.33 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.34 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.34 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.35 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.35 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.36 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.36 +WARNING:tensorflow:Detecting that an object or model or tf.train.Checkpoint is being deleted with unrestored values. See the following logs for the specific values in question. To silence these warnings, use `status.expect_partial()`. See https://www.tensorflow.org/api_docs/python/tf/train/Checkpoint#restorefor details about the status object returned by the restore function. +Detecting that an object or model or tf.train.Checkpoint is being deleted with unrestored values. See the following logs for the specific values in question. To silence these warnings, use `status.expect_partial()`. See https://www.tensorflow.org/api_docs/python/tf/train/Checkpoint#restorefor details about the status object returned by the restore function. +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.1 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.1 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.2 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.2 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.3 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.3 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.4 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.4 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.5 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.5 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.6 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.6 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.7 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.7 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.8 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.8 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.9 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.9 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.10 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.10 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.11 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.11 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.12 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.12 +imu_rr_S01_id1_combi5.0-7.0-15.0-17.0-20.0 +train +(35921, 10) +test +(364536, 9) +---CNN1D--- +input shape: (1440, 6) +x shape: (115, 1440, 6) +Reloading Tuner from /projects/CIBCIGroup/00DataUploading/rqchia/aria-respiration-cal/subject_specific/S01/imu_rr/01/cnn1d_imu_rr_S01_id1_combi5.0-7.0-15.0-17.0-20.0/bayesianoptimization/tuner0.json +{'n_layers': 3, 'filter_unit0': 32, 'filter_unit1': 64, 'filter_unit2': 64, 'kernel_size0': 2, 'kernel_size1': 3, 'kernel_size2': 3, 'pool_size0': 3, 'pool_size1': 2, 'pool_size2': 5, 'stride_size0': 5, 'stride_size1': 1, 'stride_size2': 3, 'dropout0': 0.1, 'dropout1': 0.0, 'dropout2': 0.2} + 1/39 [..............................] - ETA: 12s 34/39 [=========================>....] - ETA: 0s 39/39 [==============================] - 0s 2ms/step + subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval +0 S01 0 linreg ... -9.864563 0.038776 3.649402e-01 +1 S01 0 linreg ... -11.875765 0.070097 1.011711e-01 +2 S01 0 linreg ... -11.069278 0.047023 2.718220e-01 +3 S01 0 linreg ... -25.345517 0.016892 6.931765e-01 +4 S01 0 linreg ... -15.299470 0.118749 5.380273e-03 +.. ... ... ... ... ... ... ... +711 S06 0 linreg ... -2.382225 -0.203053 1.316660e-10 +712 S06 0 linreg ... -2.299251 -0.189599 2.081305e-09 +713 S06 0 linreg ... -2.151206 -0.211608 2.054503e-11 +714 S06 0 linreg ... -2.041921 -0.177991 1.928055e-08 +715 S06 0 linreg ... -0.976966 -0.195415 6.463433e-10 + +[716 rows x 18 columns] +imu_rr_S01_id1_combi5.0-10.0-12.0-15.0-17.0 +train +(35921, 10) +test +(364536, 9) +---CNN1D--- +input shape: (1440, 6) +x shape: (115, 1440, 6) +Reloading Tuner from /projects/CIBCIGroup/00DataUploading/rqchia/aria-respiration-cal/subject_specific/S01/imu_rr/01/cnn1d_imu_rr_S01_id1_combi5.0-10.0-12.0-15.0-17.0/bayesianoptimization/tuner0.json +{'n_layers': 1, 'filter_unit0': 128, 'kernel_size0': 4, 'pool_size0': 2, 'stride_size0': 5, 'dropout0': 0.30000000000000004} + 1/39 [..............................] - ETA: 4s 39/39 [==============================] - 0s 1ms/step + subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval +0 S01 0 linreg ... -9.864563 0.038776 3.649402e-01 +1 S01 0 linreg ... -11.875765 0.070097 1.011711e-01 +2 S01 0 linreg ... -11.069278 0.047023 2.718220e-01 +3 S01 0 linreg ... -25.345517 0.016892 6.931765e-01 +4 S01 0 linreg ... -15.299470 0.118749 5.380273e-03 +.. ... ... ... ... ... ... ... +711 S06 0 linreg ... -2.382225 -0.203053 1.316660e-10 +712 S06 0 linreg ... -2.299251 -0.189599 2.081305e-09 +713 S06 0 linreg ... -2.151206 -0.211608 2.054503e-11 +714 S06 0 linreg ... -2.041921 -0.177991 1.928055e-08 +715 S06 0 linreg ... -0.976966 -0.195415 6.463433e-10 + +[716 rows x 18 columns] +imu_rr_S01_id1_combi5.0-10.0-12.0-15.0-20.0 +train +(35921, 10) +test +(364536, 9) +---CNN1D--- +input shape: (1440, 6) +x shape: (110, 1440, 6) +Reloading Tuner from /projects/CIBCIGroup/00DataUploading/rqchia/aria-respiration-cal/subject_specific/S01/imu_rr/01/cnn1d_imu_rr_S01_id1_combi5.0-10.0-12.0-15.0-20.0/bayesianoptimization/tuner0.json +{'n_layers': 4, 'filter_unit0': 32, 'filter_unit1': 256, 'filter_unit2': 256, 'filter_unit3': 256, 'kernel_size0': 5, 'kernel_size1': 1, 'kernel_size2': 5, 'kernel_size3': 2, 'pool_size0': 5, 'pool_size1': 1, 'pool_size2': 4, 'pool_size3': 2, 'stride_size0': 4, 'stride_size1': 5, 'stride_size2': 4, 'stride_size3': 4, 'dropout0': 0.1, 'dropout1': 0.2, 'dropout2': 0.1, 'dropout3': 0.0} + 1/39 [..............................] - ETA: 16s 26/39 [===================>..........] - ETA: 0s 39/39 [==============================] - ETA: 0s 39/39 [==============================] - 1s 3ms/step + subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval +0 S01 0 linreg ... -9.864563 0.038776 3.649402e-01 +1 S01 0 linreg ... -11.875765 0.070097 1.011711e-01 +2 S01 0 linreg ... -11.069278 0.047023 2.718220e-01 +3 S01 0 linreg ... -25.345517 0.016892 6.931765e-01 +4 S01 0 linreg ... -15.299470 0.118749 5.380273e-03 +.. ... ... ... ... ... ... ... +711 S06 0 linreg ... -2.382225 -0.203053 1.316660e-10 +712 S06 0 linreg ... -2.299251 -0.189599 2.081305e-09 +713 S06 0 linreg ... -2.151206 -0.211608 2.054503e-11 +714 S06 0 linreg ... -2.041921 -0.177991 1.928055e-08 +715 S06 0 linreg ... -0.976966 -0.195415 6.463433e-10 + +[716 rows x 18 columns] +WARNING:tensorflow:Detecting that an object or model or tf.train.Checkpoint is being deleted with unrestored values. See the following logs for the specific values in question. To silence these warnings, use `status.expect_partial()`. See https://www.tensorflow.org/api_docs/python/tf/train/Checkpoint#restorefor details about the status object returned by the restore function. +Detecting that an object or model or tf.train.Checkpoint is being deleted with unrestored values. See the following logs for the specific values in question. To silence these warnings, use `status.expect_partial()`. See https://www.tensorflow.org/api_docs/python/tf/train/Checkpoint#restorefor details about the status object returned by the restore function. +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.1 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.1 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.2 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.2 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.3 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.3 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.4 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.4 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.5 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.5 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.6 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.6 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.7 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.7 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.8 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.8 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.9 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.9 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.10 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.10 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.11 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.11 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.12 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.12 +WARNING:tensorflow:Detecting that an object or model or tf.train.Checkpoint is being deleted with unrestored values. See the following logs for the specific values in question. To silence these warnings, use `status.expect_partial()`. See https://www.tensorflow.org/api_docs/python/tf/train/Checkpoint#restorefor details about the status object returned by the restore function. +Detecting that an object or model or tf.train.Checkpoint is being deleted with unrestored values. See the following logs for the specific values in question. To silence these warnings, use `status.expect_partial()`. See https://www.tensorflow.org/api_docs/python/tf/train/Checkpoint#restorefor details about the status object returned by the restore function. +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.1 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.1 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.2 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.2 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.3 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.3 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.4 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.4 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.5 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.5 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.6 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.6 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.7 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.7 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.8 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.8 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.9 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.9 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.10 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.10 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.11 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.11 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.12 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.12 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.13 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.13 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.14 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.14 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.15 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.15 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.16 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.16 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.17 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.17 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.18 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.18 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.19 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.19 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.20 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.20 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.21 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.21 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.22 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.22 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.23 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.23 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.24 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.24 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.25 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.25 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.26 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.26 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.27 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.27 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.28 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.28 +WARNING:tensorflow:Detecting that an object or model or tf.train.Checkpoint is being deleted with unrestored values. See the following logs for the specific values in question. To silence these warnings, use `status.expect_partial()`. See https://www.tensorflow.org/api_docs/python/tf/train/Checkpoint#restorefor details about the status object returned by the restore function. +Detecting that an object or model or tf.train.Checkpoint is being deleted with unrestored values. See the following logs for the specific values in question. To silence these warnings, use `status.expect_partial()`. See https://www.tensorflow.org/api_docs/python/tf/train/Checkpoint#restorefor details about the status object returned by the restore function. +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.1 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.1 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.2 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.2 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.3 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.3 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.4 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.4 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.5 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.5 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.6 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.6 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.7 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.7 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.8 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.8 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.9 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.9 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.10 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.10 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.11 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.11 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.12 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.12 +imu_rr_S01_id1_combi5.0-10.0-12.0-17.0-20.0 +train +(35921, 10) +test +(364536, 9) +---CNN1D--- +input shape: (1440, 6) +x shape: (110, 1440, 6) +Reloading Tuner from /projects/CIBCIGroup/00DataUploading/rqchia/aria-respiration-cal/subject_specific/S01/imu_rr/01/cnn1d_imu_rr_S01_id1_combi5.0-10.0-12.0-17.0-20.0/bayesianoptimization/tuner0.json +{'n_layers': 5, 'filter_unit0': 128, 'filter_unit1': 64, 'filter_unit2': 256, 'filter_unit3': 256, 'filter_unit4': 256, 'kernel_size0': 3, 'kernel_size1': 1, 'kernel_size2': 1, 'kernel_size3': 4, 'kernel_size4': 2, 'pool_size0': 3, 'pool_size1': 2, 'pool_size2': 5, 'pool_size3': 4, 'pool_size4': 5, 'stride_size0': 3, 'stride_size1': 1, 'stride_size2': 2, 'stride_size3': 5, 'stride_size4': 2, 'dropout0': 0.0, 'dropout1': 0.4, 'dropout2': 0.30000000000000004, 'dropout3': 0.0, 'dropout4': 0.0} + 1/39 [..............................] - ETA: 21s 15/39 [==========>...................] - ETA: 0s 28/39 [====================>.........] - ETA: 0s 39/39 [==============================] - ETA: 0s 39/39 [==============================] - 1s 6ms/step + subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval +0 S01 0 linreg ... -9.864563 0.038776 3.649402e-01 +1 S01 0 linreg ... -11.875765 0.070097 1.011711e-01 +2 S01 0 linreg ... -11.069278 0.047023 2.718220e-01 +3 S01 0 linreg ... -25.345517 0.016892 6.931765e-01 +4 S01 0 linreg ... -15.299470 0.118749 5.380273e-03 +.. ... ... ... ... ... ... ... +711 S06 0 linreg ... -2.382225 -0.203053 1.316660e-10 +712 S06 0 linreg ... -2.299251 -0.189599 2.081305e-09 +713 S06 0 linreg ... -2.151206 -0.211608 2.054503e-11 +714 S06 0 linreg ... -2.041921 -0.177991 1.928055e-08 +715 S06 0 linreg ... -0.976966 -0.195415 6.463433e-10 + +[716 rows x 18 columns] +imu_rr_S01_id1_combi5.0-10.0-15.0-17.0-20.0 +train +(35921, 10) +test +(364536, 9) +---CNN1D--- +input shape: (1440, 6) +x shape: (110, 1440, 6) +Reloading Tuner from /projects/CIBCIGroup/00DataUploading/rqchia/aria-respiration-cal/subject_specific/S01/imu_rr/01/cnn1d_imu_rr_S01_id1_combi5.0-10.0-15.0-17.0-20.0/bayesianoptimization/tuner0.json +{'n_layers': 4, 'filter_unit0': 64, 'filter_unit1': 64, 'filter_unit2': 32, 'filter_unit3': 64, 'kernel_size0': 2, 'kernel_size1': 5, 'kernel_size2': 1, 'kernel_size3': 3, 'pool_size0': 5, 'pool_size1': 5, 'pool_size2': 5, 'pool_size3': 2, 'stride_size0': 2, 'stride_size1': 3, 'stride_size2': 2, 'stride_size3': 1, 'dropout0': 0.0, 'dropout1': 0.1, 'dropout2': 0.4, 'dropout3': 0.30000000000000004} + 1/39 [..............................] - ETA: 15s 33/39 [========================>.....] - ETA: 0s 39/39 [==============================] - 1s 3ms/step + subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval +0 S01 0 linreg ... -9.864563 0.038776 3.649402e-01 +1 S01 0 linreg ... -11.875765 0.070097 1.011711e-01 +2 S01 0 linreg ... -11.069278 0.047023 2.718220e-01 +3 S01 0 linreg ... -25.345517 0.016892 6.931765e-01 +4 S01 0 linreg ... -15.299470 0.118749 5.380273e-03 +.. ... ... ... ... ... ... ... +711 S06 0 linreg ... -2.382225 -0.203053 1.316660e-10 +712 S06 0 linreg ... -2.299251 -0.189599 2.081305e-09 +713 S06 0 linreg ... -2.151206 -0.211608 2.054503e-11 +714 S06 0 linreg ... -2.041921 -0.177991 1.928055e-08 +715 S06 0 linreg ... -0.976966 -0.195415 6.463433e-10 + +[716 rows x 18 columns] +imu_rr_S01_id1_combi5.0-12.0-15.0-17.0-20.0 +train +(35921, 10) +test +(364536, 9) +---CNN1D--- +input shape: (1440, 6) +x shape: (115, 1440, 6) +Reloading Tuner from /projects/CIBCIGroup/00DataUploading/rqchia/aria-respiration-cal/subject_specific/S01/imu_rr/01/cnn1d_imu_rr_S01_id1_combi5.0-12.0-15.0-17.0-20.0/bayesianoptimization/tuner0.json +{'n_layers': 1, 'filter_unit0': 32, 'kernel_size0': 5, 'pool_size0': 4, 'stride_size0': 5, 'dropout0': 0.0} +Traceback (most recent call last): + File "regress_rr.py", line 1521, in <module> + rr_func(subject) + File "regress_rr.py", line 1382, in sens_rr_model + preds = model.predict(x_test) + File "/home/rqchia/.local/lib/python3.8/site-packages/keras/src/utils/traceback_utils.py", line 70, in error_handler + raise e.with_traceback(filtered_tb) from None + File "/home/rqchia/.local/lib/python3.8/site-packages/tensorflow/python/eager/execute.py", line 53, in quick_execute + tensors = pywrap_tfe.TFE_Py_Execute(ctx._handle, device_name, op_name, +tensorflow.python.framework.errors_impl.InvalidArgumentError: Graph execution error: + +Detected at node 'cnn1d/dense_output/MatMul' defined at (most recent call last): + File "regress_rr.py", line 1521, in <module> + rr_func(subject) + File "regress_rr.py", line 1382, in sens_rr_model + preds = model.predict(x_test) + File "/home/rqchia/.local/lib/python3.8/site-packages/keras/src/utils/traceback_utils.py", line 65, in error_handler + return fn(*args, **kwargs) + File "/home/rqchia/.local/lib/python3.8/site-packages/keras/src/engine/training.py", line 2554, in predict + tmp_batch_outputs = self.predict_function(iterator) + File "/home/rqchia/.local/lib/python3.8/site-packages/keras/src/engine/training.py", line 2341, in predict_function + return step_function(self, iterator) + File "/home/rqchia/.local/lib/python3.8/site-packages/keras/src/engine/training.py", line 2327, in step_function + outputs = model.distribute_strategy.run(run_step, args=(data,)) + File "/home/rqchia/.local/lib/python3.8/site-packages/keras/src/engine/training.py", line 2315, in run_step + outputs = model.predict_step(data) + File "/home/rqchia/.local/lib/python3.8/site-packages/keras/src/engine/training.py", line 2283, in predict_step + return self(x, training=False) + File "/home/rqchia/.local/lib/python3.8/site-packages/keras/src/utils/traceback_utils.py", line 65, in error_handler + return fn(*args, **kwargs) + File "/home/rqchia/.local/lib/python3.8/site-packages/keras/src/engine/training.py", line 569, in __call__ + return super().__call__(*args, **kwargs) + File "/home/rqchia/.local/lib/python3.8/site-packages/keras/src/utils/traceback_utils.py", line 65, in error_handler + return fn(*args, **kwargs) + File "/home/rqchia/.local/lib/python3.8/site-packages/keras/src/engine/base_layer.py", line 1150, in __call__ + outputs = call_fn(inputs, *args, **kwargs) + File "/home/rqchia/.local/lib/python3.8/site-packages/keras/src/utils/traceback_utils.py", line 96, in error_handler + return fn(*args, **kwargs) + File "/home/rqchia/.local/lib/python3.8/site-packages/keras/src/engine/sequential.py", line 405, in call + return super().call(inputs, training=training, mask=mask) + File "/home/rqchia/.local/lib/python3.8/site-packages/keras/src/engine/functional.py", line 512, in call + return self._run_internal_graph(inputs, training=training, mask=mask) + File "/home/rqchia/.local/lib/python3.8/site-packages/keras/src/engine/functional.py", line 669, in _run_internal_graph + outputs = node.layer(*args, **kwargs) + File "/home/rqchia/.local/lib/python3.8/site-packages/keras/src/utils/traceback_utils.py", line 65, in error_handler + return fn(*args, **kwargs) + File "/home/rqchia/.local/lib/python3.8/site-packages/keras/src/engine/base_layer.py", line 1150, in __call__ + outputs = call_fn(inputs, *args, **kwargs) + File "/home/rqchia/.local/lib/python3.8/site-packages/keras/src/utils/traceback_utils.py", line 96, in error_handler + return fn(*args, **kwargs) + File "/home/rqchia/.local/lib/python3.8/site-packages/keras/src/layers/core/dense.py", line 241, in call + outputs = tf.matmul(a=inputs, b=self.kernel) +Node: 'cnn1d/dense_output/MatMul' +Matrix size-incompatible: In[0]: [32,256], In[1]: [32,1] + [[{{node cnn1d/dense_output/MatMul}}]] [Op:__inference_predict_function_11283] +WARNING:tensorflow:Detecting that an object or model or tf.train.Checkpoint is being deleted with unrestored values. See the following logs for the specific values in question. To silence these warnings, use `status.expect_partial()`. See https://www.tensorflow.org/api_docs/python/tf/train/Checkpoint#restorefor details about the status object returned by the restore function. +Detecting that an object or model or tf.train.Checkpoint is being deleted with unrestored values. See the following logs for the specific values in question. To silence these warnings, use `status.expect_partial()`. See https://www.tensorflow.org/api_docs/python/tf/train/Checkpoint#restorefor details about the status object returned by the restore function. +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.1 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.1 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.2 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.2 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.3 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.3 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.4 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.4 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.5 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.5 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.6 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.6 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.7 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.7 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.8 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.8 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.9 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.9 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.10 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.10 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.11 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.11 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.12 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.12 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.13 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.13 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.14 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.14 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.15 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.15 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.16 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.16 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.17 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.17 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.18 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.18 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.19 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.19 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.20 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.20 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.21 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.21 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.22 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.22 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.23 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.23 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.24 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.24 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.25 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.25 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.26 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.26 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.27 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.27 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.28 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.28 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.29 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.29 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.30 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.30 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.31 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.31 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.32 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.32 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.33 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.33 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.34 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.34 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.35 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.35 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.36 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.36 +WARNING:tensorflow:Detecting that an object or model or tf.train.Checkpoint is being deleted with unrestored values. See the following logs for the specific values in question. To silence these warnings, use `status.expect_partial()`. See https://www.tensorflow.org/api_docs/python/tf/train/Checkpoint#restorefor details about the status object returned by the restore function. +Detecting that an object or model or tf.train.Checkpoint is being deleted with unrestored values. See the following logs for the specific values in question. To silence these warnings, use `status.expect_partial()`. See https://www.tensorflow.org/api_docs/python/tf/train/Checkpoint#restorefor details about the status object returned by the restore function. +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.1 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.1 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.2 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.2 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.3 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.3 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.4 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.4 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.5 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.5 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.6 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.6 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.7 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.7 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.8 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.8 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.9 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.9 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.10 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.10 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.11 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.11 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.12 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.12 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.13 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.13 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.14 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.14 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.15 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.15 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.16 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.16 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.17 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.17 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.18 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.18 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.19 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.19 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.20 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.20 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.21 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.21 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.22 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.22 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.23 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.23 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.24 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.24 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.25 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.25 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.26 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.26 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.27 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.27 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.28 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.28 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.29 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.29 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.30 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.30 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.31 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.31 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.32 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.32 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.33 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.33 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.34 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.34 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.35 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.35 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.36 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.36 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.37 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.37 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.38 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.38 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.39 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.39 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.40 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.40 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.41 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.41 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.42 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.42 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.43 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.43 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.44 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.44 +WARNING:tensorflow:Detecting that an object or model or tf.train.Checkpoint is being deleted with unrestored values. See the following logs for the specific values in question. To silence these warnings, use `status.expect_partial()`. See https://www.tensorflow.org/api_docs/python/tf/train/Checkpoint#restorefor details about the status object returned by the restore function. +Detecting that an object or model or tf.train.Checkpoint is being deleted with unrestored values. See the following logs for the specific values in question. To silence these warnings, use `status.expect_partial()`. See https://www.tensorflow.org/api_docs/python/tf/train/Checkpoint#restorefor details about the status object returned by the restore function. +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).layer_with_weights-4.kernel +Value in checkpoint could not be found in the restored object: (root).layer_with_weights-4.kernel +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).layer_with_weights-4.bias +Value in checkpoint could not be found in the restored object: (root).layer_with_weights-4.bias +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.1 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.1 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.2 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.2 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.3 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.3 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.4 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.4 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.5 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.5 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.6 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.6 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.7 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.7 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.8 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.8 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.9 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.9 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.10 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.10 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.11 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.11 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.12 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.12 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.13 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.13 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.14 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.14 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.15 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.15 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.16 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.16 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.17 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.17 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.18 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.18 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.19 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.19 +WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.20 +Value in checkpoint could not be found in the restored object: (root).optimizer._variables.20 diff --git a/logs/singularity_27064.out b/logs/singularity_27064.out new file mode 100644 index 0000000000000000000000000000000000000000..eee0c3d76387c6afa7dd1f513432fbc2f2e8fdf8 --- /dev/null +++ b/logs/singularity_27064.out @@ -0,0 +1,33 @@ +2023-11-30 18:01:44.644763: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations. +To enable the following instructions: AVX2 AVX512F FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags. +Traceback (most recent call last): + File "regress_rr.py", line 23, in <module> + import tensorflow as tf + File "/home/rqchia/.local/lib/python3.8/site-packages/tensorflow/__init__.py", line 52, in <module> + from ._api.v2 import compat + File "/home/rqchia/.local/lib/python3.8/site-packages/tensorflow/_api/v2/compat/__init__.py", line 37, in <module> + from . import v1 + File "/home/rqchia/.local/lib/python3.8/site-packages/tensorflow/_api/v2/compat/v1/__init__.py", line 31, in <module> + from . import compat + File "/home/rqchia/.local/lib/python3.8/site-packages/tensorflow/_api/v2/compat/v1/compat/__init__.py", line 38, in <module> + from . import v2 + File "/home/rqchia/.local/lib/python3.8/site-packages/tensorflow/_api/v2/compat/v1/compat/v2/__init__.py", line 28, in <module> + from tensorflow._api.v2.compat.v2 import __internal__ + File "/home/rqchia/.local/lib/python3.8/site-packages/tensorflow/_api/v2/compat/v2/__init__.py", line 33, in <module> + from . import compat + File "/home/rqchia/.local/lib/python3.8/site-packages/tensorflow/_api/v2/compat/v2/compat/__init__.py", line 38, in <module> + from . import v2 + File "/home/rqchia/.local/lib/python3.8/site-packages/tensorflow/_api/v2/compat/v2/compat/v2/__init__.py", line 34, in <module> + from tensorflow._api.v2.compat.v2 import config + File "/home/rqchia/.local/lib/python3.8/site-packages/tensorflow/_api/v2/compat/v2/config/__init__.py", line 9, in <module> + from . import optimizer + File "<frozen importlib._bootstrap>", line 991, in _find_and_load + File "<frozen importlib._bootstrap>", line 971, in _find_and_load_unlocked + File "<frozen importlib._bootstrap>", line 914, in _find_spec + File "<frozen importlib._bootstrap_external>", line 1407, in find_spec + File "<frozen importlib._bootstrap_external>", line 1379, in _get_spec + File "<frozen importlib._bootstrap_external>", line 1525, in find_spec + File "<frozen importlib._bootstrap_external>", line 156, in _path_isfile + File "<frozen importlib._bootstrap_external>", line 148, in _path_is_mode_type + File "<frozen importlib._bootstrap_external>", line 142, in _path_stat +KeyboardInterrupt diff --git a/logs/singularity_45963.out b/logs/singularity_45963.out new file mode 100644 index 0000000000000000000000000000000000000000..acf4b71502aacd81ad29529b4a47d501b2ea0ded --- /dev/null +++ b/logs/singularity_45963.out @@ -0,0 +1,45 @@ +2023-11-30 18:19:02.564572: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations. +To enable the following instructions: AVX2 AVX512F FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags. +Using TensorFlow backend +Namespace(data_input='imu', feature_method='minirocket', lbl_str='pss', method='ml', model='linreg', overwrite=0, subject=-1, test_standing=1, train_len=5, win_shift=0.2, win_size=12) +Using pre-set data id: 0 +imu_rr_S02_id0_combi5.0-7.0-10.0-12.0-15.0 +train +(36036, 10) +test +(287283, 9) +minirocket transforming... +---LinearRegression--- + subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval +0 S01 0 linreg ... -9.864563 0.038776 0.364940 +1 S01 0 linreg ... -11.875765 0.070097 0.101171 +2 S01 0 linreg ... -11.069278 0.047023 0.271822 +3 S01 0 linreg ... -25.345517 0.016892 0.693177 +4 S01 0 linreg ... -15.299470 0.118749 0.005380 +.. ... ... ... ... ... ... ... +648 S01 0 ard ... -1.383741 -0.000775 0.978195 +649 S01 0 ard ... -1.373163 -0.018246 0.519927 +650 S01 0 ard ... -0.843614 -0.027689 0.328764 +651 S01 0 ard ... -0.483776 0.012526 0.658679 +652 S01 0 ard ... -0.740169 -0.081858 0.003835 + +[653 rows x 18 columns] +QStandardPaths: XDG_RUNTIME_DIR points to non-existing path '/run/user/56779', please create it with 0700 permissions. +imu_rr_S02_id0_combi5.0-7.0-10.0-12.0-17.0 +train +(35916, 10) +test +(287283, 9) +minirocket transforming... +Traceback (most recent call last): + File "regress_rr.py", line 1521, in <module> + rr_func(subject) + File "regress_rr.py", line 1347, in sens_rr_model + x_test = minirocket.transform(x_test) + File "/home/rqchia/.local/lib/python3.8/site-packages/sktime/transformations/base.py", line 533, in transform + Xt = self._transform(X=X_inner, y=y_inner) + File "/home/rqchia/.local/lib/python3.8/site-packages/sktime/transformations/panel/rocket/_minirocket_multivariate.py", line 152, in _transform + X_ = _transform_multi(X, self.parameters) + File "/usr/local/lib/python3.8/dist-packages/numba/core/serialize.py", line 30, in _numba_unpickle + def _numba_unpickle(address, bytedata, hashed): +KeyboardInterrupt diff --git a/logs/singularity_50102.out b/logs/singularity_50102.out new file mode 100644 index 0000000000000000000000000000000000000000..419bb2cd392e3f48c4ffe366e296b329d32f3ebf --- /dev/null +++ b/logs/singularity_50102.out @@ -0,0 +1,2724 @@ +2023-11-30 18:22:21.025164: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations. +To enable the following instructions: AVX2 AVX512F FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags. +Using TensorFlow backend +Namespace(data_input='imu', feature_method='minirocket', lbl_str='pss', method='ml', model='linreg', overwrite=0, subject=-1, test_standing=1, train_len=5, win_shift=0.2, win_size=12) +Using pre-set data id: 0 +imu_rr_S01_id0_combi5.0-7.0-10.0-12.0-15.0 +train +(35921, 10) +test +(364536, 9) +minirocket transforming... +---LinearRegression--- + subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval +0 S01 0 linreg ... -9.864563 0.038776 0.364940 +1 S01 0 linreg ... -11.875765 0.070097 0.101171 +2 S01 0 linreg ... -11.069278 0.047023 0.271822 +3 S01 0 linreg ... -25.345517 0.016892 0.693177 +4 S01 0 linreg ... -15.299470 0.118749 0.005380 +.. ... ... ... ... ... ... ... +648 S01 0 ard ... -1.383741 -0.000775 0.978195 +649 S01 0 ard ... -1.373163 -0.018246 0.519927 +650 S01 0 ard ... -0.843614 -0.027689 0.328764 +651 S01 0 ard ... -0.483776 0.012526 0.658679 +652 S01 0 ard ... -0.740169 -0.081858 0.003835 + +[653 rows x 18 columns] +QStandardPaths: XDG_RUNTIME_DIR points to non-existing path '/run/user/56779', please create it with 0700 permissions. +imu_rr_S01_id0_combi5.0-7.0-10.0-12.0-17.0 +train +(35921, 10) +test +(364536, 9) +minirocket transforming... +---LinearRegression--- + subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval +0 S01 0 linreg ... -9.864563 0.038776 0.364940 +1 S01 0 linreg ... -11.875765 0.070097 0.101171 +2 S01 0 linreg ... -11.069278 0.047023 0.271822 +3 S01 0 linreg ... -25.345517 0.016892 0.693177 +4 S01 0 linreg ... -15.299470 0.118749 0.005380 +.. ... ... ... ... ... ... ... +648 S01 0 ard ... -1.383741 -0.000775 0.978195 +649 S01 0 ard ... -1.373163 -0.018246 0.519927 +650 S01 0 ard ... -0.843614 -0.027689 0.328764 +651 S01 0 ard ... -0.483776 0.012526 0.658679 +652 S01 0 ard ... -0.740169 -0.081858 0.003835 + +[653 rows x 18 columns] +imu_rr_S01_id0_combi5.0-7.0-10.0-12.0-20.0 +train +(35921, 10) +test +(364536, 9) +minirocket transforming... +---LinearRegression--- + subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval +0 S01 0 linreg ... -9.864563 0.038776 0.364940 +1 S01 0 linreg ... -11.875765 0.070097 0.101171 +2 S01 0 linreg ... -11.069278 0.047023 0.271822 +3 S01 0 linreg ... -25.345517 0.016892 0.693177 +4 S01 0 linreg ... -15.299470 0.118749 0.005380 +.. ... ... ... ... ... ... ... +648 S01 0 ard ... -1.383741 -0.000775 0.978195 +649 S01 0 ard ... -1.373163 -0.018246 0.519927 +650 S01 0 ard ... -0.843614 -0.027689 0.328764 +651 S01 0 ard ... -0.483776 0.012526 0.658679 +652 S01 0 ard ... -0.740169 -0.081858 0.003835 + +[653 rows x 18 columns] +imu_rr_S01_id0_combi5.0-7.0-10.0-15.0-17.0 +train +(35921, 10) +test +(364536, 9) +minirocket transforming... +---LinearRegression--- + subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval +0 S01 0 linreg ... -9.864563 0.038776 0.364940 +1 S01 0 linreg ... -11.875765 0.070097 0.101171 +2 S01 0 linreg ... -11.069278 0.047023 0.271822 +3 S01 0 linreg ... -25.345517 0.016892 0.693177 +4 S01 0 linreg ... -15.299470 0.118749 0.005380 +.. ... ... ... ... ... ... ... +648 S01 0 ard ... -1.383741 -0.000775 0.978195 +649 S01 0 ard ... -1.373163 -0.018246 0.519927 +650 S01 0 ard ... -0.843614 -0.027689 0.328764 +651 S01 0 ard ... -0.483776 0.012526 0.658679 +652 S01 0 ard ... -0.740169 -0.081858 0.003835 + +[653 rows x 18 columns] +imu_rr_S01_id0_combi5.0-7.0-10.0-15.0-20.0 +train +(35921, 10) +test +(364536, 9) +minirocket transforming... +---LinearRegression--- + subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval +0 S01 0 linreg ... -9.864563 0.038776 0.364940 +1 S01 0 linreg ... -11.875765 0.070097 0.101171 +2 S01 0 linreg ... -11.069278 0.047023 0.271822 +3 S01 0 linreg ... -25.345517 0.016892 0.693177 +4 S01 0 linreg ... -15.299470 0.118749 0.005380 +.. ... ... ... ... ... ... ... +648 S01 0 ard ... -1.383741 -0.000775 0.978195 +649 S01 0 ard ... -1.373163 -0.018246 0.519927 +650 S01 0 ard ... -0.843614 -0.027689 0.328764 +651 S01 0 ard ... -0.483776 0.012526 0.658679 +652 S01 0 ard ... -0.740169 -0.081858 0.003835 + +[653 rows x 18 columns] +imu_rr_S01_id0_combi5.0-7.0-10.0-17.0-20.0 +train +(35921, 10) +test +(364536, 9) +minirocket transforming... +---LinearRegression--- + subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval +0 S01 0 linreg ... -9.864563 0.038776 0.364940 +1 S01 0 linreg ... -11.875765 0.070097 0.101171 +2 S01 0 linreg ... -11.069278 0.047023 0.271822 +3 S01 0 linreg ... -25.345517 0.016892 0.693177 +4 S01 0 linreg ... -15.299470 0.118749 0.005380 +.. ... ... ... ... ... ... ... +648 S01 0 ard ... -1.383741 -0.000775 0.978195 +649 S01 0 ard ... -1.373163 -0.018246 0.519927 +650 S01 0 ard ... -0.843614 -0.027689 0.328764 +651 S01 0 ard ... -0.483776 0.012526 0.658679 +652 S01 0 ard ... -0.740169 -0.081858 0.003835 + +[653 rows x 18 columns] +imu_rr_S01_id0_combi5.0-7.0-12.0-15.0-17.0 +train +(35921, 10) +test +(364536, 9) +minirocket transforming... +---LinearRegression--- + subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval +0 S01 0 linreg ... -9.864563 0.038776 0.364940 +1 S01 0 linreg ... -11.875765 0.070097 0.101171 +2 S01 0 linreg ... -11.069278 0.047023 0.271822 +3 S01 0 linreg ... -25.345517 0.016892 0.693177 +4 S01 0 linreg ... -15.299470 0.118749 0.005380 +.. ... ... ... ... ... ... ... +648 S01 0 ard ... -1.383741 -0.000775 0.978195 +649 S01 0 ard ... -1.373163 -0.018246 0.519927 +650 S01 0 ard ... -0.843614 -0.027689 0.328764 +651 S01 0 ard ... -0.483776 0.012526 0.658679 +652 S01 0 ard ... -0.740169 -0.081858 0.003835 + +[653 rows x 18 columns] +imu_rr_S01_id0_combi5.0-7.0-12.0-15.0-20.0 +train +(35921, 10) +test +(364536, 9) +minirocket transforming... +---LinearRegression--- + subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval +0 S01 0 linreg ... -9.864563 0.038776 0.364940 +1 S01 0 linreg ... -11.875765 0.070097 0.101171 +2 S01 0 linreg ... -11.069278 0.047023 0.271822 +3 S01 0 linreg ... -25.345517 0.016892 0.693177 +4 S01 0 linreg ... -15.299470 0.118749 0.005380 +.. ... ... ... ... ... ... ... +648 S01 0 ard ... -1.383741 -0.000775 0.978195 +649 S01 0 ard ... -1.373163 -0.018246 0.519927 +650 S01 0 ard ... -0.843614 -0.027689 0.328764 +651 S01 0 ard ... -0.483776 0.012526 0.658679 +652 S01 0 ard ... -0.740169 -0.081858 0.003835 + +[653 rows x 18 columns] +imu_rr_S01_id0_combi5.0-7.0-12.0-17.0-20.0 +train +(35921, 10) +test +(364536, 9) +minirocket transforming... +---LinearRegression--- + subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval +0 S01 0 linreg ... -9.864563 0.038776 0.364940 +1 S01 0 linreg ... -11.875765 0.070097 0.101171 +2 S01 0 linreg ... -11.069278 0.047023 0.271822 +3 S01 0 linreg ... -25.345517 0.016892 0.693177 +4 S01 0 linreg ... -15.299470 0.118749 0.005380 +.. ... ... ... ... ... ... ... +648 S01 0 ard ... -1.383741 -0.000775 0.978195 +649 S01 0 ard ... -1.373163 -0.018246 0.519927 +650 S01 0 ard ... -0.843614 -0.027689 0.328764 +651 S01 0 ard ... -0.483776 0.012526 0.658679 +652 S01 0 ard ... -0.740169 -0.081858 0.003835 + +[653 rows x 18 columns] +imu_rr_S01_id0_combi5.0-7.0-15.0-17.0-20.0 +train +(35921, 10) +test +(364536, 9) +minirocket transforming... +---LinearRegression--- + subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval +0 S01 0 linreg ... -9.864563 0.038776 0.364940 +1 S01 0 linreg ... -11.875765 0.070097 0.101171 +2 S01 0 linreg ... -11.069278 0.047023 0.271822 +3 S01 0 linreg ... -25.345517 0.016892 0.693177 +4 S01 0 linreg ... -15.299470 0.118749 0.005380 +.. ... ... ... ... ... ... ... +648 S01 0 ard ... -1.383741 -0.000775 0.978195 +649 S01 0 ard ... -1.373163 -0.018246 0.519927 +650 S01 0 ard ... -0.843614 -0.027689 0.328764 +651 S01 0 ard ... -0.483776 0.012526 0.658679 +652 S01 0 ard ... -0.740169 -0.081858 0.003835 + +[653 rows x 18 columns] +imu_rr_S01_id0_combi5.0-10.0-12.0-15.0-17.0 +train +(35921, 10) +test +(364536, 9) +minirocket transforming... +---LinearRegression--- + subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval +0 S01 0 linreg ... -9.864563 0.038776 0.364940 +1 S01 0 linreg ... -11.875765 0.070097 0.101171 +2 S01 0 linreg ... -11.069278 0.047023 0.271822 +3 S01 0 linreg ... -25.345517 0.016892 0.693177 +4 S01 0 linreg ... -15.299470 0.118749 0.005380 +.. ... ... ... ... ... ... ... +648 S01 0 ard ... -1.383741 -0.000775 0.978195 +649 S01 0 ard ... -1.373163 -0.018246 0.519927 +650 S01 0 ard ... -0.843614 -0.027689 0.328764 +651 S01 0 ard ... -0.483776 0.012526 0.658679 +652 S01 0 ard ... -0.740169 -0.081858 0.003835 + +[653 rows x 18 columns] +imu_rr_S01_id0_combi5.0-10.0-12.0-15.0-20.0 +train +(35921, 10) +test +(364536, 9) +minirocket transforming... +---LinearRegression--- + subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval +0 S01 0 linreg ... -9.864563 0.038776 0.364940 +1 S01 0 linreg ... -11.875765 0.070097 0.101171 +2 S01 0 linreg ... -11.069278 0.047023 0.271822 +3 S01 0 linreg ... -25.345517 0.016892 0.693177 +4 S01 0 linreg ... -15.299470 0.118749 0.005380 +.. ... ... ... ... ... ... ... +648 S01 0 ard ... -1.383741 -0.000775 0.978195 +649 S01 0 ard ... -1.373163 -0.018246 0.519927 +650 S01 0 ard ... -0.843614 -0.027689 0.328764 +651 S01 0 ard ... -0.483776 0.012526 0.658679 +652 S01 0 ard ... -0.740169 -0.081858 0.003835 + +[653 rows x 18 columns] +imu_rr_S01_id0_combi5.0-10.0-12.0-17.0-20.0 +train +(35921, 10) +test +(364536, 9) +minirocket transforming... +---LinearRegression--- + subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval +0 S01 0 linreg ... -9.864563 0.038776 0.364940 +1 S01 0 linreg ... -11.875765 0.070097 0.101171 +2 S01 0 linreg ... -11.069278 0.047023 0.271822 +3 S01 0 linreg ... -25.345517 0.016892 0.693177 +4 S01 0 linreg ... -15.299470 0.118749 0.005380 +.. ... ... ... ... ... ... ... +648 S01 0 ard ... -1.383741 -0.000775 0.978195 +649 S01 0 ard ... -1.373163 -0.018246 0.519927 +650 S01 0 ard ... -0.843614 -0.027689 0.328764 +651 S01 0 ard ... -0.483776 0.012526 0.658679 +652 S01 0 ard ... -0.740169 -0.081858 0.003835 + +[653 rows x 18 columns] +imu_rr_S01_id0_combi5.0-10.0-15.0-17.0-20.0 +train +(35921, 10) +test +(364536, 9) +minirocket transforming... +---LinearRegression--- + subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval +0 S01 0 linreg ... -9.864563 0.038776 0.364940 +1 S01 0 linreg ... -11.875765 0.070097 0.101171 +2 S01 0 linreg ... -11.069278 0.047023 0.271822 +3 S01 0 linreg ... -25.345517 0.016892 0.693177 +4 S01 0 linreg ... -15.299470 0.118749 0.005380 +.. ... ... ... ... ... ... ... +648 S01 0 ard ... -1.383741 -0.000775 0.978195 +649 S01 0 ard ... -1.373163 -0.018246 0.519927 +650 S01 0 ard ... -0.843614 -0.027689 0.328764 +651 S01 0 ard ... -0.483776 0.012526 0.658679 +652 S01 0 ard ... -0.740169 -0.081858 0.003835 + +[653 rows x 18 columns] +imu_rr_S01_id0_combi5.0-12.0-15.0-17.0-20.0 +train +(35921, 10) +test +(364536, 9) +minirocket transforming... +---LinearRegression--- + subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval +0 S01 0 linreg ... -9.864563 0.038776 0.364940 +1 S01 0 linreg ... -11.875765 0.070097 0.101171 +2 S01 0 linreg ... -11.069278 0.047023 0.271822 +3 S01 0 linreg ... -25.345517 0.016892 0.693177 +4 S01 0 linreg ... -15.299470 0.118749 0.005380 +.. ... ... ... ... ... ... ... +648 S01 0 ard ... -1.383741 -0.000775 0.978195 +649 S01 0 ard ... -1.373163 -0.018246 0.519927 +650 S01 0 ard ... -0.843614 -0.027689 0.328764 +651 S01 0 ard ... -0.483776 0.012526 0.658679 +652 S01 0 ard ... -0.740169 -0.081858 0.003835 + +[653 rows x 18 columns] +imu_rr_S01_id0_combi7.0-10.0-12.0-15.0-17.0 +train +(35920, 10) +test +(364536, 9) +minirocket transforming... +---LinearRegression--- + subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval +0 S01 0 linreg ... -9.864563 0.038776 0.364940 +1 S01 0 linreg ... -11.875765 0.070097 0.101171 +2 S01 0 linreg ... -11.069278 0.047023 0.271822 +3 S01 0 linreg ... -25.345517 0.016892 0.693177 +4 S01 0 linreg ... -15.299470 0.118749 0.005380 +.. ... ... ... ... ... ... ... +648 S01 0 ard ... -1.383741 -0.000775 0.978195 +649 S01 0 ard ... -1.373163 -0.018246 0.519927 +650 S01 0 ard ... -0.843614 -0.027689 0.328764 +651 S01 0 ard ... -0.483776 0.012526 0.658679 +652 S01 0 ard ... -0.740169 -0.081858 0.003835 + +[653 rows x 18 columns] +imu_rr_S01_id0_combi7.0-10.0-12.0-15.0-20.0 +train +(35920, 10) +test +(364536, 9) +minirocket transforming... +---LinearRegression--- + subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval +0 S01 0 linreg ... -9.864563 0.038776 0.364940 +1 S01 0 linreg ... -11.875765 0.070097 0.101171 +2 S01 0 linreg ... -11.069278 0.047023 0.271822 +3 S01 0 linreg ... -25.345517 0.016892 0.693177 +4 S01 0 linreg ... -15.299470 0.118749 0.005380 +.. ... ... ... ... ... ... ... +648 S01 0 ard ... -1.383741 -0.000775 0.978195 +649 S01 0 ard ... -1.373163 -0.018246 0.519927 +650 S01 0 ard ... -0.843614 -0.027689 0.328764 +651 S01 0 ard ... -0.483776 0.012526 0.658679 +652 S01 0 ard ... -0.740169 -0.081858 0.003835 + +[653 rows x 18 columns] +imu_rr_S01_id0_combi7.0-10.0-12.0-17.0-20.0 +train +(35920, 10) +test +(364536, 9) +minirocket transforming... +---LinearRegression--- + subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval +0 S01 0 linreg ... -9.864563 0.038776 0.364940 +1 S01 0 linreg ... -11.875765 0.070097 0.101171 +2 S01 0 linreg ... -11.069278 0.047023 0.271822 +3 S01 0 linreg ... -25.345517 0.016892 0.693177 +4 S01 0 linreg ... -15.299470 0.118749 0.005380 +.. ... ... ... ... ... ... ... +648 S01 0 ard ... -1.383741 -0.000775 0.978195 +649 S01 0 ard ... -1.373163 -0.018246 0.519927 +650 S01 0 ard ... -0.843614 -0.027689 0.328764 +651 S01 0 ard ... -0.483776 0.012526 0.658679 +652 S01 0 ard ... -0.740169 -0.081858 0.003835 + +[653 rows x 18 columns] +imu_rr_S01_id0_combi7.0-10.0-15.0-17.0-20.0 +train +(35920, 10) +test +(364536, 9) +minirocket transforming... +---LinearRegression--- + subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval +0 S01 0 linreg ... -9.864563 0.038776 0.364940 +1 S01 0 linreg ... -11.875765 0.070097 0.101171 +2 S01 0 linreg ... -11.069278 0.047023 0.271822 +3 S01 0 linreg ... -25.345517 0.016892 0.693177 +4 S01 0 linreg ... -15.299470 0.118749 0.005380 +.. ... ... ... ... ... ... ... +648 S01 0 ard ... -1.383741 -0.000775 0.978195 +649 S01 0 ard ... -1.373163 -0.018246 0.519927 +650 S01 0 ard ... -0.843614 -0.027689 0.328764 +651 S01 0 ard ... -0.483776 0.012526 0.658679 +652 S01 0 ard ... -0.740169 -0.081858 0.003835 + +[653 rows x 18 columns] +imu_rr_S01_id0_combi7.0-12.0-15.0-17.0-20.0 +train +(35920, 10) +test +(364536, 9) +minirocket transforming... +---LinearRegression--- + subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval +0 S01 0 linreg ... -9.864563 0.038776 0.364940 +1 S01 0 linreg ... -11.875765 0.070097 0.101171 +2 S01 0 linreg ... -11.069278 0.047023 0.271822 +3 S01 0 linreg ... -25.345517 0.016892 0.693177 +4 S01 0 linreg ... -15.299470 0.118749 0.005380 +.. ... ... ... ... ... ... ... +648 S01 0 ard ... -1.383741 -0.000775 0.978195 +649 S01 0 ard ... -1.373163 -0.018246 0.519927 +650 S01 0 ard ... -0.843614 -0.027689 0.328764 +651 S01 0 ard ... -0.483776 0.012526 0.658679 +652 S01 0 ard ... -0.740169 -0.081858 0.003835 + +[653 rows x 18 columns] +imu_rr_S01_id0_combi10.0-12.0-15.0-17.0-20.0 +train +(35920, 10) +test +(364536, 9) +minirocket transforming... +---LinearRegression--- + subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval +0 S01 0 linreg ... -9.864563 0.038776 0.364940 +1 S01 0 linreg ... -11.875765 0.070097 0.101171 +2 S01 0 linreg ... -11.069278 0.047023 0.271822 +3 S01 0 linreg ... -25.345517 0.016892 0.693177 +4 S01 0 linreg ... -15.299470 0.118749 0.005380 +.. ... ... ... ... ... ... ... +648 S01 0 ard ... -1.383741 -0.000775 0.978195 +649 S01 0 ard ... -1.373163 -0.018246 0.519927 +650 S01 0 ard ... -0.843614 -0.027689 0.328764 +651 S01 0 ard ... -0.483776 0.012526 0.658679 +652 S01 0 ard ... -0.740169 -0.081858 0.003835 + +[653 rows x 18 columns] +Using pre-set data id: 0 +imu_rr_S02_id0_combi5.0-7.0-10.0-12.0-15.0 +train +(36036, 10) +test +(287283, 9) +minirocket transforming... +---LinearRegression--- + subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval +0 S01 0 linreg ... -9.864563 0.038776 0.364940 +1 S01 0 linreg ... -11.875765 0.070097 0.101171 +2 S01 0 linreg ... -11.069278 0.047023 0.271822 +3 S01 0 linreg ... -25.345517 0.016892 0.693177 +4 S01 0 linreg ... -15.299470 0.118749 0.005380 +.. ... ... ... ... ... ... ... +648 S01 0 ard ... -1.383741 -0.000775 0.978195 +649 S01 0 ard ... -1.373163 -0.018246 0.519927 +650 S01 0 ard ... -0.843614 -0.027689 0.328764 +651 S01 0 ard ... -0.483776 0.012526 0.658679 +652 S01 0 ard ... -0.740169 -0.081858 0.003835 + +[653 rows x 18 columns] +imu_rr_S02_id0_combi5.0-7.0-10.0-12.0-17.0 +train +(35916, 10) +test +(287283, 9) +minirocket transforming... +---LinearRegression--- + subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval +0 S01 0 linreg ... -9.864563 0.038776 0.364940 +1 S01 0 linreg ... -11.875765 0.070097 0.101171 +2 S01 0 linreg ... -11.069278 0.047023 0.271822 +3 S01 0 linreg ... -25.345517 0.016892 0.693177 +4 S01 0 linreg ... -15.299470 0.118749 0.005380 +.. ... ... ... ... ... ... ... +648 S01 0 ard ... -1.383741 -0.000775 0.978195 +649 S01 0 ard ... -1.373163 -0.018246 0.519927 +650 S01 0 ard ... -0.843614 -0.027689 0.328764 +651 S01 0 ard ... -0.483776 0.012526 0.658679 +652 S01 0 ard ... -0.740169 -0.081858 0.003835 + +[653 rows x 18 columns] +imu_rr_S02_id0_combi5.0-7.0-10.0-12.0-20.0 +train +(36036, 10) +test +(287283, 9) +minirocket transforming... +---LinearRegression--- + subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval +0 S01 0 linreg ... -9.864563 0.038776 0.364940 +1 S01 0 linreg ... -11.875765 0.070097 0.101171 +2 S01 0 linreg ... -11.069278 0.047023 0.271822 +3 S01 0 linreg ... -25.345517 0.016892 0.693177 +4 S01 0 linreg ... -15.299470 0.118749 0.005380 +.. ... ... ... ... ... ... ... +648 S01 0 ard ... -1.383741 -0.000775 0.978195 +649 S01 0 ard ... -1.373163 -0.018246 0.519927 +650 S01 0 ard ... -0.843614 -0.027689 0.328764 +651 S01 0 ard ... -0.483776 0.012526 0.658679 +652 S01 0 ard ... -0.740169 -0.081858 0.003835 + +[653 rows x 18 columns] +imu_rr_S02_id0_combi5.0-7.0-10.0-15.0-17.0 +train +(36036, 10) +test +(287283, 9) +minirocket transforming... +---LinearRegression--- + subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval +0 S01 0 linreg ... -9.864563 0.038776 0.364940 +1 S01 0 linreg ... -11.875765 0.070097 0.101171 +2 S01 0 linreg ... -11.069278 0.047023 0.271822 +3 S01 0 linreg ... -25.345517 0.016892 0.693177 +4 S01 0 linreg ... -15.299470 0.118749 0.005380 +.. ... ... ... ... ... ... ... +648 S01 0 ard ... -1.383741 -0.000775 0.978195 +649 S01 0 ard ... -1.373163 -0.018246 0.519927 +650 S01 0 ard ... -0.843614 -0.027689 0.328764 +651 S01 0 ard ... -0.483776 0.012526 0.658679 +652 S01 0 ard ... -0.740169 -0.081858 0.003835 + +[653 rows x 18 columns] +imu_rr_S02_id0_combi5.0-7.0-10.0-15.0-20.0 +train +(36156, 10) +test +(287283, 9) +minirocket transforming... +---LinearRegression--- + subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval +0 S01 0 linreg ... -9.864563 0.038776 0.364940 +1 S01 0 linreg ... -11.875765 0.070097 0.101171 +2 S01 0 linreg ... -11.069278 0.047023 0.271822 +3 S01 0 linreg ... -25.345517 0.016892 0.693177 +4 S01 0 linreg ... -15.299470 0.118749 0.005380 +.. ... ... ... ... ... ... ... +648 S01 0 ard ... -1.383741 -0.000775 0.978195 +649 S01 0 ard ... -1.373163 -0.018246 0.519927 +650 S01 0 ard ... -0.843614 -0.027689 0.328764 +651 S01 0 ard ... -0.483776 0.012526 0.658679 +652 S01 0 ard ... -0.740169 -0.081858 0.003835 + +[653 rows x 18 columns] +imu_rr_S02_id0_combi5.0-7.0-10.0-17.0-20.0 +train +(36036, 10) +test +(287283, 9) +minirocket transforming... +---LinearRegression--- + subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval +0 S01 0 linreg ... -9.864563 0.038776 0.364940 +1 S01 0 linreg ... -11.875765 0.070097 0.101171 +2 S01 0 linreg ... -11.069278 0.047023 0.271822 +3 S01 0 linreg ... -25.345517 0.016892 0.693177 +4 S01 0 linreg ... -15.299470 0.118749 0.005380 +.. ... ... ... ... ... ... ... +648 S01 0 ard ... -1.383741 -0.000775 0.978195 +649 S01 0 ard ... -1.373163 -0.018246 0.519927 +650 S01 0 ard ... -0.843614 -0.027689 0.328764 +651 S01 0 ard ... -0.483776 0.012526 0.658679 +652 S01 0 ard ... -0.740169 -0.081858 0.003835 + +[653 rows x 18 columns] +imu_rr_S02_id0_combi5.0-7.0-12.0-15.0-17.0 +train +(36036, 10) +test +(287283, 9) +minirocket transforming... +---LinearRegression--- + subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval +0 S01 0 linreg ... -9.864563 0.038776 0.364940 +1 S01 0 linreg ... -11.875765 0.070097 0.101171 +2 S01 0 linreg ... -11.069278 0.047023 0.271822 +3 S01 0 linreg ... -25.345517 0.016892 0.693177 +4 S01 0 linreg ... -15.299470 0.118749 0.005380 +.. ... ... ... ... ... ... ... +648 S01 0 ard ... -1.383741 -0.000775 0.978195 +649 S01 0 ard ... -1.373163 -0.018246 0.519927 +650 S01 0 ard ... -0.843614 -0.027689 0.328764 +651 S01 0 ard ... -0.483776 0.012526 0.658679 +652 S01 0 ard ... -0.740169 -0.081858 0.003835 + +[653 rows x 18 columns] +imu_rr_S02_id0_combi5.0-7.0-12.0-15.0-20.0 +train +(36156, 10) +test +(287283, 9) +minirocket transforming... +---LinearRegression--- + subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval +0 S01 0 linreg ... -9.864563 0.038776 0.364940 +1 S01 0 linreg ... -11.875765 0.070097 0.101171 +2 S01 0 linreg ... -11.069278 0.047023 0.271822 +3 S01 0 linreg ... -25.345517 0.016892 0.693177 +4 S01 0 linreg ... -15.299470 0.118749 0.005380 +.. ... ... ... ... ... ... ... +648 S01 0 ard ... -1.383741 -0.000775 0.978195 +649 S01 0 ard ... -1.373163 -0.018246 0.519927 +650 S01 0 ard ... -0.843614 -0.027689 0.328764 +651 S01 0 ard ... -0.483776 0.012526 0.658679 +652 S01 0 ard ... -0.740169 -0.081858 0.003835 + +[653 rows x 18 columns] +imu_rr_S02_id0_combi5.0-7.0-12.0-17.0-20.0 +train +(36036, 10) +test +(287283, 9) +minirocket transforming... +---LinearRegression--- + subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval +0 S01 0 linreg ... -9.864563 0.038776 0.364940 +1 S01 0 linreg ... -11.875765 0.070097 0.101171 +2 S01 0 linreg ... -11.069278 0.047023 0.271822 +3 S01 0 linreg ... -25.345517 0.016892 0.693177 +4 S01 0 linreg ... -15.299470 0.118749 0.005380 +.. ... ... ... ... ... ... ... +648 S01 0 ard ... -1.383741 -0.000775 0.978195 +649 S01 0 ard ... -1.373163 -0.018246 0.519927 +650 S01 0 ard ... -0.843614 -0.027689 0.328764 +651 S01 0 ard ... -0.483776 0.012526 0.658679 +652 S01 0 ard ... -0.740169 -0.081858 0.003835 + +[653 rows x 18 columns] +imu_rr_S02_id0_combi5.0-7.0-15.0-17.0-20.0 +train +(36156, 10) +test +(287283, 9) +minirocket transforming... +---LinearRegression--- + subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval +0 S01 0 linreg ... -9.864563 0.038776 0.364940 +1 S01 0 linreg ... -11.875765 0.070097 0.101171 +2 S01 0 linreg ... -11.069278 0.047023 0.271822 +3 S01 0 linreg ... -25.345517 0.016892 0.693177 +4 S01 0 linreg ... -15.299470 0.118749 0.005380 +.. ... ... ... ... ... ... ... +648 S01 0 ard ... -1.383741 -0.000775 0.978195 +649 S01 0 ard ... -1.373163 -0.018246 0.519927 +650 S01 0 ard ... -0.843614 -0.027689 0.328764 +651 S01 0 ard ... -0.483776 0.012526 0.658679 +652 S01 0 ard ... -0.740169 -0.081858 0.003835 + +[653 rows x 18 columns] +imu_rr_S02_id0_combi5.0-10.0-12.0-15.0-17.0 +train +(36036, 10) +test +(287283, 9) +minirocket transforming... +---LinearRegression--- + subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval +0 S01 0 linreg ... -9.864563 0.038776 0.364940 +1 S01 0 linreg ... -11.875765 0.070097 0.101171 +2 S01 0 linreg ... -11.069278 0.047023 0.271822 +3 S01 0 linreg ... -25.345517 0.016892 0.693177 +4 S01 0 linreg ... -15.299470 0.118749 0.005380 +.. ... ... ... ... ... ... ... +648 S01 0 ard ... -1.383741 -0.000775 0.978195 +649 S01 0 ard ... -1.373163 -0.018246 0.519927 +650 S01 0 ard ... -0.843614 -0.027689 0.328764 +651 S01 0 ard ... -0.483776 0.012526 0.658679 +652 S01 0 ard ... -0.740169 -0.081858 0.003835 + +[653 rows x 18 columns] +imu_rr_S02_id0_combi5.0-10.0-12.0-15.0-20.0 +train +(36156, 10) +test +(287283, 9) +minirocket transforming... +---LinearRegression--- + subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval +0 S01 0 linreg ... -9.864563 0.038776 0.364940 +1 S01 0 linreg ... -11.875765 0.070097 0.101171 +2 S01 0 linreg ... -11.069278 0.047023 0.271822 +3 S01 0 linreg ... -25.345517 0.016892 0.693177 +4 S01 0 linreg ... -15.299470 0.118749 0.005380 +.. ... ... ... ... ... ... ... +648 S01 0 ard ... -1.383741 -0.000775 0.978195 +649 S01 0 ard ... -1.373163 -0.018246 0.519927 +650 S01 0 ard ... -0.843614 -0.027689 0.328764 +651 S01 0 ard ... -0.483776 0.012526 0.658679 +652 S01 0 ard ... -0.740169 -0.081858 0.003835 + +[653 rows x 18 columns] +imu_rr_S02_id0_combi5.0-10.0-12.0-17.0-20.0 +train +(36036, 10) +test +(287283, 9) +minirocket transforming... +---LinearRegression--- + subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval +0 S01 0 linreg ... -9.864563 0.038776 0.364940 +1 S01 0 linreg ... -11.875765 0.070097 0.101171 +2 S01 0 linreg ... -11.069278 0.047023 0.271822 +3 S01 0 linreg ... -25.345517 0.016892 0.693177 +4 S01 0 linreg ... -15.299470 0.118749 0.005380 +.. ... ... ... ... ... ... ... +648 S01 0 ard ... -1.383741 -0.000775 0.978195 +649 S01 0 ard ... -1.373163 -0.018246 0.519927 +650 S01 0 ard ... -0.843614 -0.027689 0.328764 +651 S01 0 ard ... -0.483776 0.012526 0.658679 +652 S01 0 ard ... -0.740169 -0.081858 0.003835 + +[653 rows x 18 columns] +imu_rr_S02_id0_combi5.0-10.0-15.0-17.0-20.0 +train +(36156, 10) +test +(287283, 9) +minirocket transforming... +---LinearRegression--- + subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval +0 S01 0 linreg ... -9.864563 0.038776 0.364940 +1 S01 0 linreg ... -11.875765 0.070097 0.101171 +2 S01 0 linreg ... -11.069278 0.047023 0.271822 +3 S01 0 linreg ... -25.345517 0.016892 0.693177 +4 S01 0 linreg ... -15.299470 0.118749 0.005380 +.. ... ... ... ... ... ... ... +648 S01 0 ard ... -1.383741 -0.000775 0.978195 +649 S01 0 ard ... -1.373163 -0.018246 0.519927 +650 S01 0 ard ... -0.843614 -0.027689 0.328764 +651 S01 0 ard ... -0.483776 0.012526 0.658679 +652 S01 0 ard ... -0.740169 -0.081858 0.003835 + +[653 rows x 18 columns] +imu_rr_S02_id0_combi5.0-12.0-15.0-17.0-20.0 +train +(36156, 10) +test +(287283, 9) +minirocket transforming... +---LinearRegression--- + subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval +0 S01 0 linreg ... -9.864563 0.038776 0.364940 +1 S01 0 linreg ... -11.875765 0.070097 0.101171 +2 S01 0 linreg ... -11.069278 0.047023 0.271822 +3 S01 0 linreg ... -25.345517 0.016892 0.693177 +4 S01 0 linreg ... -15.299470 0.118749 0.005380 +.. ... ... ... ... ... ... ... +648 S01 0 ard ... -1.383741 -0.000775 0.978195 +649 S01 0 ard ... -1.373163 -0.018246 0.519927 +650 S01 0 ard ... -0.843614 -0.027689 0.328764 +651 S01 0 ard ... -0.483776 0.012526 0.658679 +652 S01 0 ard ... -0.740169 -0.081858 0.003835 + +[653 rows x 18 columns] +imu_rr_S02_id0_combi7.0-10.0-12.0-15.0-17.0 +train +(36035, 10) +test +(287283, 9) +minirocket transforming... +---LinearRegression--- + subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval +0 S01 0 linreg ... -9.864563 0.038776 0.364940 +1 S01 0 linreg ... -11.875765 0.070097 0.101171 +2 S01 0 linreg ... -11.069278 0.047023 0.271822 +3 S01 0 linreg ... -25.345517 0.016892 0.693177 +4 S01 0 linreg ... -15.299470 0.118749 0.005380 +.. ... ... ... ... ... ... ... +648 S01 0 ard ... -1.383741 -0.000775 0.978195 +649 S01 0 ard ... -1.373163 -0.018246 0.519927 +650 S01 0 ard ... -0.843614 -0.027689 0.328764 +651 S01 0 ard ... -0.483776 0.012526 0.658679 +652 S01 0 ard ... -0.740169 -0.081858 0.003835 + +[653 rows x 18 columns] +imu_rr_S02_id0_combi7.0-10.0-12.0-15.0-20.0 +train +(36155, 10) +test +(287283, 9) +minirocket transforming... +---LinearRegression--- + subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval +0 S01 0 linreg ... -9.864563 0.038776 0.364940 +1 S01 0 linreg ... -11.875765 0.070097 0.101171 +2 S01 0 linreg ... -11.069278 0.047023 0.271822 +3 S01 0 linreg ... -25.345517 0.016892 0.693177 +4 S01 0 linreg ... -15.299470 0.118749 0.005380 +.. ... ... ... ... ... ... ... +648 S01 0 ard ... -1.383741 -0.000775 0.978195 +649 S01 0 ard ... -1.373163 -0.018246 0.519927 +650 S01 0 ard ... -0.843614 -0.027689 0.328764 +651 S01 0 ard ... -0.483776 0.012526 0.658679 +652 S01 0 ard ... -0.740169 -0.081858 0.003835 + +[653 rows x 18 columns] +imu_rr_S02_id0_combi7.0-10.0-12.0-17.0-20.0 +train +(36035, 10) +test +(287283, 9) +minirocket transforming... +---LinearRegression--- + subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval +0 S01 0 linreg ... -9.864563 0.038776 0.364940 +1 S01 0 linreg ... -11.875765 0.070097 0.101171 +2 S01 0 linreg ... -11.069278 0.047023 0.271822 +3 S01 0 linreg ... -25.345517 0.016892 0.693177 +4 S01 0 linreg ... -15.299470 0.118749 0.005380 +.. ... ... ... ... ... ... ... +648 S01 0 ard ... -1.383741 -0.000775 0.978195 +649 S01 0 ard ... -1.373163 -0.018246 0.519927 +650 S01 0 ard ... -0.843614 -0.027689 0.328764 +651 S01 0 ard ... -0.483776 0.012526 0.658679 +652 S01 0 ard ... -0.740169 -0.081858 0.003835 + +[653 rows x 18 columns] +imu_rr_S02_id0_combi7.0-10.0-15.0-17.0-20.0 +train +(36155, 10) +test +(287283, 9) +minirocket transforming... +---LinearRegression--- + subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval +0 S01 0 linreg ... -9.864563 0.038776 0.364940 +1 S01 0 linreg ... -11.875765 0.070097 0.101171 +2 S01 0 linreg ... -11.069278 0.047023 0.271822 +3 S01 0 linreg ... -25.345517 0.016892 0.693177 +4 S01 0 linreg ... -15.299470 0.118749 0.005380 +.. ... ... ... ... ... ... ... +648 S01 0 ard ... -1.383741 -0.000775 0.978195 +649 S01 0 ard ... -1.373163 -0.018246 0.519927 +650 S01 0 ard ... -0.843614 -0.027689 0.328764 +651 S01 0 ard ... -0.483776 0.012526 0.658679 +652 S01 0 ard ... -0.740169 -0.081858 0.003835 + +[653 rows x 18 columns] +imu_rr_S02_id0_combi7.0-12.0-15.0-17.0-20.0 +train +(36155, 10) +test +(287283, 9) +minirocket transforming... +---LinearRegression--- + subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval +0 S01 0 linreg ... -9.864563 0.038776 0.364940 +1 S01 0 linreg ... -11.875765 0.070097 0.101171 +2 S01 0 linreg ... -11.069278 0.047023 0.271822 +3 S01 0 linreg ... -25.345517 0.016892 0.693177 +4 S01 0 linreg ... -15.299470 0.118749 0.005380 +.. ... ... ... ... ... ... ... +648 S01 0 ard ... -1.383741 -0.000775 0.978195 +649 S01 0 ard ... -1.373163 -0.018246 0.519927 +650 S01 0 ard ... -0.843614 -0.027689 0.328764 +651 S01 0 ard ... -0.483776 0.012526 0.658679 +652 S01 0 ard ... -0.740169 -0.081858 0.003835 + +[653 rows x 18 columns] +imu_rr_S02_id0_combi10.0-12.0-15.0-17.0-20.0 +train +(36155, 10) +test +(287283, 9) +minirocket transforming... +---LinearRegression--- + subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval +0 S01 0 linreg ... -9.864563 0.038776 0.364940 +1 S01 0 linreg ... -11.875765 0.070097 0.101171 +2 S01 0 linreg ... -11.069278 0.047023 0.271822 +3 S01 0 linreg ... -25.345517 0.016892 0.693177 +4 S01 0 linreg ... -15.299470 0.118749 0.005380 +.. ... ... ... ... ... ... ... +648 S01 0 ard ... -1.383741 -0.000775 0.978195 +649 S01 0 ard ... -1.373163 -0.018246 0.519927 +650 S01 0 ard ... -0.843614 -0.027689 0.328764 +651 S01 0 ard ... -0.483776 0.012526 0.658679 +652 S01 0 ard ... -0.740169 -0.081858 0.003835 + +[653 rows x 18 columns] +Using pre-set data id: 0 +imu_rr_S03_id0_combi5.0-7.0-10.0-12.0-15.0 +train +(35921, 10) +test +(287299, 9) +minirocket transforming... +---LinearRegression--- + subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval +0 S01 0 linreg ... -9.864563 0.038776 0.364940 +1 S01 0 linreg ... -11.875765 0.070097 0.101171 +2 S01 0 linreg ... -11.069278 0.047023 0.271822 +3 S01 0 linreg ... -25.345517 0.016892 0.693177 +4 S01 0 linreg ... -15.299470 0.118749 0.005380 +.. ... ... ... ... ... ... ... +648 S01 0 ard ... -1.383741 -0.000775 0.978195 +649 S01 0 ard ... -1.373163 -0.018246 0.519927 +650 S01 0 ard ... -0.843614 -0.027689 0.328764 +651 S01 0 ard ... -0.483776 0.012526 0.658679 +652 S01 0 ard ... -0.740169 -0.081858 0.003835 + +[653 rows x 18 columns] +imu_rr_S03_id0_combi5.0-7.0-10.0-12.0-17.0 +train +(35921, 10) +test +(287299, 9) +minirocket transforming... +---LinearRegression--- + subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval +0 S01 0 linreg ... -9.864563 0.038776 0.364940 +1 S01 0 linreg ... -11.875765 0.070097 0.101171 +2 S01 0 linreg ... -11.069278 0.047023 0.271822 +3 S01 0 linreg ... -25.345517 0.016892 0.693177 +4 S01 0 linreg ... -15.299470 0.118749 0.005380 +.. ... ... ... ... ... ... ... +648 S01 0 ard ... -1.383741 -0.000775 0.978195 +649 S01 0 ard ... -1.373163 -0.018246 0.519927 +650 S01 0 ard ... -0.843614 -0.027689 0.328764 +651 S01 0 ard ... -0.483776 0.012526 0.658679 +652 S01 0 ard ... -0.740169 -0.081858 0.003835 + +[653 rows x 18 columns] +imu_rr_S03_id0_combi5.0-7.0-10.0-12.0-20.0 +train +(35921, 10) +test +(287299, 9) +minirocket transforming... +---LinearRegression--- + subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval +0 S01 0 linreg ... -9.864563 0.038776 0.364940 +1 S01 0 linreg ... -11.875765 0.070097 0.101171 +2 S01 0 linreg ... -11.069278 0.047023 0.271822 +3 S01 0 linreg ... -25.345517 0.016892 0.693177 +4 S01 0 linreg ... -15.299470 0.118749 0.005380 +.. ... ... ... ... ... ... ... +648 S01 0 ard ... -1.383741 -0.000775 0.978195 +649 S01 0 ard ... -1.373163 -0.018246 0.519927 +650 S01 0 ard ... -0.843614 -0.027689 0.328764 +651 S01 0 ard ... -0.483776 0.012526 0.658679 +652 S01 0 ard ... -0.740169 -0.081858 0.003835 + +[653 rows x 18 columns] +imu_rr_S03_id0_combi5.0-7.0-10.0-15.0-17.0 +train +(35921, 10) +test +(287299, 9) +minirocket transforming... +---LinearRegression--- + subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval +0 S01 0 linreg ... -9.864563 0.038776 0.364940 +1 S01 0 linreg ... -11.875765 0.070097 0.101171 +2 S01 0 linreg ... -11.069278 0.047023 0.271822 +3 S01 0 linreg ... -25.345517 0.016892 0.693177 +4 S01 0 linreg ... -15.299470 0.118749 0.005380 +.. ... ... ... ... ... ... ... +648 S01 0 ard ... -1.383741 -0.000775 0.978195 +649 S01 0 ard ... -1.373163 -0.018246 0.519927 +650 S01 0 ard ... -0.843614 -0.027689 0.328764 +651 S01 0 ard ... -0.483776 0.012526 0.658679 +652 S01 0 ard ... -0.740169 -0.081858 0.003835 + +[653 rows x 18 columns] +imu_rr_S03_id0_combi5.0-7.0-10.0-15.0-20.0 +train +(35921, 10) +test +(287299, 9) +minirocket transforming... +---LinearRegression--- + subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval +0 S01 0 linreg ... -9.864563 0.038776 0.364940 +1 S01 0 linreg ... -11.875765 0.070097 0.101171 +2 S01 0 linreg ... -11.069278 0.047023 0.271822 +3 S01 0 linreg ... -25.345517 0.016892 0.693177 +4 S01 0 linreg ... -15.299470 0.118749 0.005380 +.. ... ... ... ... ... ... ... +648 S01 0 ard ... -1.383741 -0.000775 0.978195 +649 S01 0 ard ... -1.373163 -0.018246 0.519927 +650 S01 0 ard ... -0.843614 -0.027689 0.328764 +651 S01 0 ard ... -0.483776 0.012526 0.658679 +652 S01 0 ard ... -0.740169 -0.081858 0.003835 + +[653 rows x 18 columns] +imu_rr_S03_id0_combi5.0-7.0-10.0-17.0-20.0 +train +(35921, 10) +test +(287299, 9) +minirocket transforming... +---LinearRegression--- + subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval +0 S01 0 linreg ... -9.864563 0.038776 0.364940 +1 S01 0 linreg ... -11.875765 0.070097 0.101171 +2 S01 0 linreg ... -11.069278 0.047023 0.271822 +3 S01 0 linreg ... -25.345517 0.016892 0.693177 +4 S01 0 linreg ... -15.299470 0.118749 0.005380 +.. ... ... ... ... ... ... ... +648 S01 0 ard ... -1.383741 -0.000775 0.978195 +649 S01 0 ard ... -1.373163 -0.018246 0.519927 +650 S01 0 ard ... -0.843614 -0.027689 0.328764 +651 S01 0 ard ... -0.483776 0.012526 0.658679 +652 S01 0 ard ... -0.740169 -0.081858 0.003835 + +[653 rows x 18 columns] +imu_rr_S03_id0_combi5.0-7.0-12.0-15.0-17.0 +train +(35921, 10) +test +(287299, 9) +minirocket transforming... +---LinearRegression--- + subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval +0 S01 0 linreg ... -9.864563 0.038776 0.364940 +1 S01 0 linreg ... -11.875765 0.070097 0.101171 +2 S01 0 linreg ... -11.069278 0.047023 0.271822 +3 S01 0 linreg ... -25.345517 0.016892 0.693177 +4 S01 0 linreg ... -15.299470 0.118749 0.005380 +.. ... ... ... ... ... ... ... +648 S01 0 ard ... -1.383741 -0.000775 0.978195 +649 S01 0 ard ... -1.373163 -0.018246 0.519927 +650 S01 0 ard ... -0.843614 -0.027689 0.328764 +651 S01 0 ard ... -0.483776 0.012526 0.658679 +652 S01 0 ard ... -0.740169 -0.081858 0.003835 + +[653 rows x 18 columns] +imu_rr_S03_id0_combi5.0-7.0-12.0-15.0-20.0 +train +(35921, 10) +test +(287299, 9) +minirocket transforming... +---LinearRegression--- + subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval +0 S01 0 linreg ... -9.864563 0.038776 0.364940 +1 S01 0 linreg ... -11.875765 0.070097 0.101171 +2 S01 0 linreg ... -11.069278 0.047023 0.271822 +3 S01 0 linreg ... -25.345517 0.016892 0.693177 +4 S01 0 linreg ... -15.299470 0.118749 0.005380 +.. ... ... ... ... ... ... ... +648 S01 0 ard ... -1.383741 -0.000775 0.978195 +649 S01 0 ard ... -1.373163 -0.018246 0.519927 +650 S01 0 ard ... -0.843614 -0.027689 0.328764 +651 S01 0 ard ... -0.483776 0.012526 0.658679 +652 S01 0 ard ... -0.740169 -0.081858 0.003835 + +[653 rows x 18 columns] +imu_rr_S03_id0_combi5.0-7.0-12.0-17.0-20.0 +train +(35921, 10) +test +(287299, 9) +minirocket transforming... +---LinearRegression--- + subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval +0 S01 0 linreg ... -9.864563 0.038776 0.364940 +1 S01 0 linreg ... -11.875765 0.070097 0.101171 +2 S01 0 linreg ... -11.069278 0.047023 0.271822 +3 S01 0 linreg ... -25.345517 0.016892 0.693177 +4 S01 0 linreg ... -15.299470 0.118749 0.005380 +.. ... ... ... ... ... ... ... +648 S01 0 ard ... -1.383741 -0.000775 0.978195 +649 S01 0 ard ... -1.373163 -0.018246 0.519927 +650 S01 0 ard ... -0.843614 -0.027689 0.328764 +651 S01 0 ard ... -0.483776 0.012526 0.658679 +652 S01 0 ard ... -0.740169 -0.081858 0.003835 + +[653 rows x 18 columns] +imu_rr_S03_id0_combi5.0-7.0-15.0-17.0-20.0 +train +(35921, 10) +test +(287299, 9) +minirocket transforming... +---LinearRegression--- + subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval +0 S01 0 linreg ... -9.864563 0.038776 0.364940 +1 S01 0 linreg ... -11.875765 0.070097 0.101171 +2 S01 0 linreg ... -11.069278 0.047023 0.271822 +3 S01 0 linreg ... -25.345517 0.016892 0.693177 +4 S01 0 linreg ... -15.299470 0.118749 0.005380 +.. ... ... ... ... ... ... ... +648 S01 0 ard ... -1.383741 -0.000775 0.978195 +649 S01 0 ard ... -1.373163 -0.018246 0.519927 +650 S01 0 ard ... -0.843614 -0.027689 0.328764 +651 S01 0 ard ... -0.483776 0.012526 0.658679 +652 S01 0 ard ... -0.740169 -0.081858 0.003835 + +[653 rows x 18 columns] +imu_rr_S03_id0_combi5.0-10.0-12.0-15.0-17.0 +train +(35921, 10) +test +(287299, 9) +minirocket transforming... +---LinearRegression--- + subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval +0 S01 0 linreg ... -9.864563 0.038776 0.364940 +1 S01 0 linreg ... -11.875765 0.070097 0.101171 +2 S01 0 linreg ... -11.069278 0.047023 0.271822 +3 S01 0 linreg ... -25.345517 0.016892 0.693177 +4 S01 0 linreg ... -15.299470 0.118749 0.005380 +.. ... ... ... ... ... ... ... +648 S01 0 ard ... -1.383741 -0.000775 0.978195 +649 S01 0 ard ... -1.373163 -0.018246 0.519927 +650 S01 0 ard ... -0.843614 -0.027689 0.328764 +651 S01 0 ard ... -0.483776 0.012526 0.658679 +652 S01 0 ard ... -0.740169 -0.081858 0.003835 + +[653 rows x 18 columns] +imu_rr_S03_id0_combi5.0-10.0-12.0-15.0-20.0 +train +(35921, 10) +test +(287299, 9) +minirocket transforming... +---LinearRegression--- + subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval +0 S01 0 linreg ... -9.864563 0.038776 0.364940 +1 S01 0 linreg ... -11.875765 0.070097 0.101171 +2 S01 0 linreg ... -11.069278 0.047023 0.271822 +3 S01 0 linreg ... -25.345517 0.016892 0.693177 +4 S01 0 linreg ... -15.299470 0.118749 0.005380 +.. ... ... ... ... ... ... ... +648 S01 0 ard ... -1.383741 -0.000775 0.978195 +649 S01 0 ard ... -1.373163 -0.018246 0.519927 +650 S01 0 ard ... -0.843614 -0.027689 0.328764 +651 S01 0 ard ... -0.483776 0.012526 0.658679 +652 S01 0 ard ... -0.740169 -0.081858 0.003835 + +[653 rows x 18 columns] +imu_rr_S03_id0_combi5.0-10.0-12.0-17.0-20.0 +train +(35921, 10) +test +(287299, 9) +minirocket transforming... +---LinearRegression--- + subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval +0 S01 0 linreg ... -9.864563 0.038776 0.364940 +1 S01 0 linreg ... -11.875765 0.070097 0.101171 +2 S01 0 linreg ... -11.069278 0.047023 0.271822 +3 S01 0 linreg ... -25.345517 0.016892 0.693177 +4 S01 0 linreg ... -15.299470 0.118749 0.005380 +.. ... ... ... ... ... ... ... +648 S01 0 ard ... -1.383741 -0.000775 0.978195 +649 S01 0 ard ... -1.373163 -0.018246 0.519927 +650 S01 0 ard ... -0.843614 -0.027689 0.328764 +651 S01 0 ard ... -0.483776 0.012526 0.658679 +652 S01 0 ard ... -0.740169 -0.081858 0.003835 + +[653 rows x 18 columns] +imu_rr_S03_id0_combi5.0-10.0-15.0-17.0-20.0 +train +(35921, 10) +test +(287299, 9) +minirocket transforming... +---LinearRegression--- + subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval +0 S01 0 linreg ... -9.864563 0.038776 0.364940 +1 S01 0 linreg ... -11.875765 0.070097 0.101171 +2 S01 0 linreg ... -11.069278 0.047023 0.271822 +3 S01 0 linreg ... -25.345517 0.016892 0.693177 +4 S01 0 linreg ... -15.299470 0.118749 0.005380 +.. ... ... ... ... ... ... ... +648 S01 0 ard ... -1.383741 -0.000775 0.978195 +649 S01 0 ard ... -1.373163 -0.018246 0.519927 +650 S01 0 ard ... -0.843614 -0.027689 0.328764 +651 S01 0 ard ... -0.483776 0.012526 0.658679 +652 S01 0 ard ... -0.740169 -0.081858 0.003835 + +[653 rows x 18 columns] +imu_rr_S03_id0_combi5.0-12.0-15.0-17.0-20.0 +train +(35921, 10) +test +(287299, 9) +minirocket transforming... +---LinearRegression--- + subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval +0 S01 0 linreg ... -9.864563 0.038776 0.364940 +1 S01 0 linreg ... -11.875765 0.070097 0.101171 +2 S01 0 linreg ... -11.069278 0.047023 0.271822 +3 S01 0 linreg ... -25.345517 0.016892 0.693177 +4 S01 0 linreg ... -15.299470 0.118749 0.005380 +.. ... ... ... ... ... ... ... +648 S01 0 ard ... -1.383741 -0.000775 0.978195 +649 S01 0 ard ... -1.373163 -0.018246 0.519927 +650 S01 0 ard ... -0.843614 -0.027689 0.328764 +651 S01 0 ard ... -0.483776 0.012526 0.658679 +652 S01 0 ard ... -0.740169 -0.081858 0.003835 + +[653 rows x 18 columns] +imu_rr_S03_id0_combi7.0-10.0-12.0-15.0-17.0 +train +(35920, 10) +test +(287299, 9) +minirocket transforming... +---LinearRegression--- + subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval +0 S01 0 linreg ... -9.864563 0.038776 0.364940 +1 S01 0 linreg ... -11.875765 0.070097 0.101171 +2 S01 0 linreg ... -11.069278 0.047023 0.271822 +3 S01 0 linreg ... -25.345517 0.016892 0.693177 +4 S01 0 linreg ... -15.299470 0.118749 0.005380 +.. ... ... ... ... ... ... ... +648 S01 0 ard ... -1.383741 -0.000775 0.978195 +649 S01 0 ard ... -1.373163 -0.018246 0.519927 +650 S01 0 ard ... -0.843614 -0.027689 0.328764 +651 S01 0 ard ... -0.483776 0.012526 0.658679 +652 S01 0 ard ... -0.740169 -0.081858 0.003835 + +[653 rows x 18 columns] +imu_rr_S03_id0_combi7.0-10.0-12.0-15.0-20.0 +train +(35920, 10) +test +(287299, 9) +minirocket transforming... +---LinearRegression--- + subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval +0 S01 0 linreg ... -9.864563 0.038776 0.364940 +1 S01 0 linreg ... -11.875765 0.070097 0.101171 +2 S01 0 linreg ... -11.069278 0.047023 0.271822 +3 S01 0 linreg ... -25.345517 0.016892 0.693177 +4 S01 0 linreg ... -15.299470 0.118749 0.005380 +.. ... ... ... ... ... ... ... +648 S01 0 ard ... -1.383741 -0.000775 0.978195 +649 S01 0 ard ... -1.373163 -0.018246 0.519927 +650 S01 0 ard ... -0.843614 -0.027689 0.328764 +651 S01 0 ard ... -0.483776 0.012526 0.658679 +652 S01 0 ard ... -0.740169 -0.081858 0.003835 + +[653 rows x 18 columns] +imu_rr_S03_id0_combi7.0-10.0-12.0-17.0-20.0 +train +(35920, 10) +test +(287299, 9) +minirocket transforming... +---LinearRegression--- + subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval +0 S01 0 linreg ... -9.864563 0.038776 0.364940 +1 S01 0 linreg ... -11.875765 0.070097 0.101171 +2 S01 0 linreg ... -11.069278 0.047023 0.271822 +3 S01 0 linreg ... -25.345517 0.016892 0.693177 +4 S01 0 linreg ... -15.299470 0.118749 0.005380 +.. ... ... ... ... ... ... ... +648 S01 0 ard ... -1.383741 -0.000775 0.978195 +649 S01 0 ard ... -1.373163 -0.018246 0.519927 +650 S01 0 ard ... -0.843614 -0.027689 0.328764 +651 S01 0 ard ... -0.483776 0.012526 0.658679 +652 S01 0 ard ... -0.740169 -0.081858 0.003835 + +[653 rows x 18 columns] +imu_rr_S03_id0_combi7.0-10.0-15.0-17.0-20.0 +train +(35920, 10) +test +(287299, 9) +minirocket transforming... +---LinearRegression--- + subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval +0 S01 0 linreg ... -9.864563 0.038776 0.364940 +1 S01 0 linreg ... -11.875765 0.070097 0.101171 +2 S01 0 linreg ... -11.069278 0.047023 0.271822 +3 S01 0 linreg ... -25.345517 0.016892 0.693177 +4 S01 0 linreg ... -15.299470 0.118749 0.005380 +.. ... ... ... ... ... ... ... +648 S01 0 ard ... -1.383741 -0.000775 0.978195 +649 S01 0 ard ... -1.373163 -0.018246 0.519927 +650 S01 0 ard ... -0.843614 -0.027689 0.328764 +651 S01 0 ard ... -0.483776 0.012526 0.658679 +652 S01 0 ard ... -0.740169 -0.081858 0.003835 + +[653 rows x 18 columns] +imu_rr_S03_id0_combi7.0-12.0-15.0-17.0-20.0 +train +(35920, 10) +test +(287299, 9) +minirocket transforming... +---LinearRegression--- + subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval +0 S01 0 linreg ... -9.864563 0.038776 0.364940 +1 S01 0 linreg ... -11.875765 0.070097 0.101171 +2 S01 0 linreg ... -11.069278 0.047023 0.271822 +3 S01 0 linreg ... -25.345517 0.016892 0.693177 +4 S01 0 linreg ... -15.299470 0.118749 0.005380 +.. ... ... ... ... ... ... ... +648 S01 0 ard ... -1.383741 -0.000775 0.978195 +649 S01 0 ard ... -1.373163 -0.018246 0.519927 +650 S01 0 ard ... -0.843614 -0.027689 0.328764 +651 S01 0 ard ... -0.483776 0.012526 0.658679 +652 S01 0 ard ... -0.740169 -0.081858 0.003835 + +[653 rows x 18 columns] +imu_rr_S03_id0_combi10.0-12.0-15.0-17.0-20.0 +train +(35920, 10) +test +(287299, 9) +minirocket transforming... +---LinearRegression--- + subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval +0 S01 0 linreg ... -9.864563 0.038776 0.364940 +1 S01 0 linreg ... -11.875765 0.070097 0.101171 +2 S01 0 linreg ... -11.069278 0.047023 0.271822 +3 S01 0 linreg ... -25.345517 0.016892 0.693177 +4 S01 0 linreg ... -15.299470 0.118749 0.005380 +.. ... ... ... ... ... ... ... +648 S01 0 ard ... -1.383741 -0.000775 0.978195 +649 S01 0 ard ... -1.373163 -0.018246 0.519927 +650 S01 0 ard ... -0.843614 -0.027689 0.328764 +651 S01 0 ard ... -0.483776 0.012526 0.658679 +652 S01 0 ard ... -0.740169 -0.081858 0.003835 + +[653 rows x 18 columns] +unable to find matching config id +Data id not set, auto assigned to: 0 +imu_rr_S04_id0_combi5.0-7.0-10.0-12.0-15.0 +train +(35921, 10) +test +(287280, 9) +minirocket transforming... +---LinearRegression--- +adding new entry + subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval +0 S01 0 linreg ... -9.864563 0.038776 0.364940 +1 S01 0 linreg ... -11.875765 0.070097 0.101171 +2 S01 0 linreg ... -11.069278 0.047023 0.271822 +3 S01 0 linreg ... -25.345517 0.016892 0.693177 +4 S01 0 linreg ... -15.299470 0.118749 0.005380 +.. ... ... ... ... ... ... ... +649 S01 0 ard ... -1.373163 -0.018246 0.519927 +650 S01 0 ard ... -0.843614 -0.027689 0.328764 +651 S01 0 ard ... -0.483776 0.012526 0.658679 +652 S01 0 ard ... -0.740169 -0.081858 0.003835 +653 S04 0 linreg ... -4.992226 0.020375 0.523425 + +[654 rows x 18 columns] +imu_rr_S04_id0_combi5.0-7.0-10.0-12.0-17.0 +train +(35921, 10) +test +(287280, 9) +minirocket transforming... +---LinearRegression--- +adding new entry + subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval +0 S01 0 linreg ... -9.864563 0.038776 0.364940 +1 S01 0 linreg ... -11.875765 0.070097 0.101171 +2 S01 0 linreg ... -11.069278 0.047023 0.271822 +3 S01 0 linreg ... -25.345517 0.016892 0.693177 +4 S01 0 linreg ... -15.299470 0.118749 0.005380 +.. ... ... ... ... ... ... ... +650 S01 0 ard ... -0.843614 -0.027689 0.328764 +651 S01 0 ard ... -0.483776 0.012526 0.658679 +652 S01 0 ard ... -0.740169 -0.081858 0.003835 +653 S04 0 linreg ... -4.992226 0.020375 0.523425 +654 S04 0 linreg ... -4.486957 -0.067075 0.035493 + +[655 rows x 18 columns] +imu_rr_S04_id0_combi5.0-7.0-10.0-12.0-20.0 +train +(35920, 10) +test +(287280, 9) +minirocket transforming... +---LinearRegression--- +adding new entry + subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval +0 S01 0 linreg ... -9.864563 0.038776 0.364940 +1 S01 0 linreg ... -11.875765 0.070097 0.101171 +2 S01 0 linreg ... -11.069278 0.047023 0.271822 +3 S01 0 linreg ... -25.345517 0.016892 0.693177 +4 S01 0 linreg ... -15.299470 0.118749 0.005380 +.. ... ... ... ... ... ... ... +651 S01 0 ard ... -0.483776 0.012526 0.658679 +652 S01 0 ard ... -0.740169 -0.081858 0.003835 +653 S04 0 linreg ... -4.992226 0.020375 0.523425 +654 S04 0 linreg ... -4.486957 -0.067075 0.035493 +655 S04 0 linreg ... -8.317642 -0.033834 0.289262 + +[656 rows x 18 columns] +imu_rr_S04_id0_combi5.0-7.0-10.0-15.0-17.0 +train +(35921, 10) +test +(287280, 9) +minirocket transforming... +---LinearRegression--- +adding new entry + subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval +0 S01 0 linreg ... -9.864563 0.038776 0.364940 +1 S01 0 linreg ... -11.875765 0.070097 0.101171 +2 S01 0 linreg ... -11.069278 0.047023 0.271822 +3 S01 0 linreg ... -25.345517 0.016892 0.693177 +4 S01 0 linreg ... -15.299470 0.118749 0.005380 +.. ... ... ... ... ... ... ... +652 S01 0 ard ... -0.740169 -0.081858 0.003835 +653 S04 0 linreg ... -4.992226 0.020375 0.523425 +654 S04 0 linreg ... -4.486957 -0.067075 0.035493 +655 S04 0 linreg ... -8.317642 -0.033834 0.289262 +656 S04 0 linreg ... -3.635692 -0.014839 0.642159 + +[657 rows x 18 columns] +imu_rr_S04_id0_combi5.0-7.0-10.0-15.0-20.0 +train +(35920, 10) +test +(287280, 9) +minirocket transforming... +---LinearRegression--- +adding new entry + subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval +0 S01 0 linreg ... -9.864563 0.038776 0.364940 +1 S01 0 linreg ... -11.875765 0.070097 0.101171 +2 S01 0 linreg ... -11.069278 0.047023 0.271822 +3 S01 0 linreg ... -25.345517 0.016892 0.693177 +4 S01 0 linreg ... -15.299470 0.118749 0.005380 +.. ... ... ... ... ... ... ... +653 S04 0 linreg ... -4.992226 0.020375 0.523425 +654 S04 0 linreg ... -4.486957 -0.067075 0.035493 +655 S04 0 linreg ... -8.317642 -0.033834 0.289262 +656 S04 0 linreg ... -3.635692 -0.014839 0.642159 +657 S04 0 linreg ... -8.856661 -0.013460 0.673397 + +[658 rows x 18 columns] +imu_rr_S04_id0_combi5.0-7.0-10.0-17.0-20.0 +train +(35920, 10) +test +(287280, 9) +minirocket transforming... +---LinearRegression--- +adding new entry + subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval +0 S01 0 linreg ... -9.864563 0.038776 0.364940 +1 S01 0 linreg ... -11.875765 0.070097 0.101171 +2 S01 0 linreg ... -11.069278 0.047023 0.271822 +3 S01 0 linreg ... -25.345517 0.016892 0.693177 +4 S01 0 linreg ... -15.299470 0.118749 0.005380 +.. ... ... ... ... ... ... ... +654 S04 0 linreg ... -4.486957 -0.067075 0.035493 +655 S04 0 linreg ... -8.317642 -0.033834 0.289262 +656 S04 0 linreg ... -3.635692 -0.014839 0.642159 +657 S04 0 linreg ... -8.856661 -0.013460 0.673397 +658 S04 0 linreg ... -6.366705 -0.019279 0.546018 + +[659 rows x 18 columns] +imu_rr_S04_id0_combi5.0-7.0-12.0-15.0-17.0 +train +(35921, 10) +test +(287280, 9) +minirocket transforming... +---LinearRegression--- +adding new entry + subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval +0 S01 0 linreg ... -9.864563 0.038776 0.364940 +1 S01 0 linreg ... -11.875765 0.070097 0.101171 +2 S01 0 linreg ... -11.069278 0.047023 0.271822 +3 S01 0 linreg ... -25.345517 0.016892 0.693177 +4 S01 0 linreg ... -15.299470 0.118749 0.005380 +.. ... ... ... ... ... ... ... +655 S04 0 linreg ... -8.317642 -0.033834 0.289262 +656 S04 0 linreg ... -3.635692 -0.014839 0.642159 +657 S04 0 linreg ... -8.856661 -0.013460 0.673397 +658 S04 0 linreg ... -6.366705 -0.019279 0.546018 +659 S04 0 linreg ... -5.464115 0.013095 0.681751 + +[660 rows x 18 columns] +imu_rr_S04_id0_combi5.0-7.0-12.0-15.0-20.0 +train +(35920, 10) +test +(287280, 9) +minirocket transforming... +---LinearRegression--- +adding new entry + subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval +0 S01 0 linreg ... -9.864563 0.038776 0.364940 +1 S01 0 linreg ... -11.875765 0.070097 0.101171 +2 S01 0 linreg ... -11.069278 0.047023 0.271822 +3 S01 0 linreg ... -25.345517 0.016892 0.693177 +4 S01 0 linreg ... -15.299470 0.118749 0.005380 +.. ... ... ... ... ... ... ... +656 S04 0 linreg ... -3.635692 -0.014839 0.642159 +657 S04 0 linreg ... -8.856661 -0.013460 0.673397 +658 S04 0 linreg ... -6.366705 -0.019279 0.546018 +659 S04 0 linreg ... -5.464115 0.013095 0.681751 +660 S04 0 linreg ... -10.713418 -0.039688 0.213785 + +[661 rows x 18 columns] +imu_rr_S04_id0_combi5.0-7.0-12.0-17.0-20.0 +train +(35920, 10) +test +(287280, 9) +minirocket transforming... +---LinearRegression--- +adding new entry + subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval +0 S01 0 linreg ... -9.864563 0.038776 0.364940 +1 S01 0 linreg ... -11.875765 0.070097 0.101171 +2 S01 0 linreg ... -11.069278 0.047023 0.271822 +3 S01 0 linreg ... -25.345517 0.016892 0.693177 +4 S01 0 linreg ... -15.299470 0.118749 0.005380 +.. ... ... ... ... ... ... ... +657 S04 0 linreg ... -8.856661 -0.013460 0.673397 +658 S04 0 linreg ... -6.366705 -0.019279 0.546018 +659 S04 0 linreg ... -5.464115 0.013095 0.681751 +660 S04 0 linreg ... -10.713418 -0.039688 0.213785 +661 S04 0 linreg ... -7.938866 -0.005651 0.859557 + +[662 rows x 18 columns] +imu_rr_S04_id0_combi5.0-7.0-15.0-17.0-20.0 +train +(35920, 10) +test +(287280, 9) +minirocket transforming... +---LinearRegression--- +adding new entry + subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval +0 S01 0 linreg ... -9.864563 0.038776 0.364940 +1 S01 0 linreg ... -11.875765 0.070097 0.101171 +2 S01 0 linreg ... -11.069278 0.047023 0.271822 +3 S01 0 linreg ... -25.345517 0.016892 0.693177 +4 S01 0 linreg ... -15.299470 0.118749 0.005380 +.. ... ... ... ... ... ... ... +658 S04 0 linreg ... -6.366705 -0.019279 0.546018 +659 S04 0 linreg ... -5.464115 0.013095 0.681751 +660 S04 0 linreg ... -10.713418 -0.039688 0.213785 +661 S04 0 linreg ... -7.938866 -0.005651 0.859557 +662 S04 0 linreg ... -6.228437 -0.053016 0.096665 + +[663 rows x 18 columns] +imu_rr_S04_id0_combi5.0-10.0-12.0-15.0-17.0 +train +(35921, 10) +test +(287280, 9) +minirocket transforming... +---LinearRegression--- +adding new entry + subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval +0 S01 0 linreg ... -9.864563 0.038776 0.364940 +1 S01 0 linreg ... -11.875765 0.070097 0.101171 +2 S01 0 linreg ... -11.069278 0.047023 0.271822 +3 S01 0 linreg ... -25.345517 0.016892 0.693177 +4 S01 0 linreg ... -15.299470 0.118749 0.005380 +.. ... ... ... ... ... ... ... +659 S04 0 linreg ... -5.464115 0.013095 0.681751 +660 S04 0 linreg ... -10.713418 -0.039688 0.213785 +661 S04 0 linreg ... -7.938866 -0.005651 0.859557 +662 S04 0 linreg ... -6.228437 -0.053016 0.096665 +663 S04 0 linreg ... -5.690539 0.026037 0.414816 + +[664 rows x 18 columns] +imu_rr_S04_id0_combi5.0-10.0-12.0-15.0-20.0 +train +(35920, 10) +test +(287280, 9) +minirocket transforming... +---LinearRegression--- +adding new entry + subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval +0 S01 0 linreg ... -9.864563 0.038776 0.364940 +1 S01 0 linreg ... -11.875765 0.070097 0.101171 +2 S01 0 linreg ... -11.069278 0.047023 0.271822 +3 S01 0 linreg ... -25.345517 0.016892 0.693177 +4 S01 0 linreg ... -15.299470 0.118749 0.005380 +.. ... ... ... ... ... ... ... +660 S04 0 linreg ... -10.713418 -0.039688 0.213785 +661 S04 0 linreg ... -7.938866 -0.005651 0.859557 +662 S04 0 linreg ... -6.228437 -0.053016 0.096665 +663 S04 0 linreg ... -5.690539 0.026037 0.414816 +664 S04 0 linreg ... -9.717190 0.014684 0.645642 + +[665 rows x 18 columns] +imu_rr_S04_id0_combi5.0-10.0-12.0-17.0-20.0 +train +(35920, 10) +test +(287280, 9) +minirocket transforming... +---LinearRegression--- +adding new entry + subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval +0 S01 0 linreg ... -9.864563 0.038776 0.364940 +1 S01 0 linreg ... -11.875765 0.070097 0.101171 +2 S01 0 linreg ... -11.069278 0.047023 0.271822 +3 S01 0 linreg ... -25.345517 0.016892 0.693177 +4 S01 0 linreg ... -15.299470 0.118749 0.005380 +.. ... ... ... ... ... ... ... +661 S04 0 linreg ... -7.938866 -0.005651 0.859557 +662 S04 0 linreg ... -6.228437 -0.053016 0.096665 +663 S04 0 linreg ... -5.690539 0.026037 0.414816 +664 S04 0 linreg ... -9.717190 0.014684 0.645642 +665 S04 0 linreg ... -8.995283 0.001889 0.952839 + +[666 rows x 18 columns] +imu_rr_S04_id0_combi5.0-10.0-15.0-17.0-20.0 +train +(35920, 10) +test +(287280, 9) +minirocket transforming... +---LinearRegression--- +adding new entry + subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval +0 S01 0 linreg ... -9.864563 0.038776 0.364940 +1 S01 0 linreg ... -11.875765 0.070097 0.101171 +2 S01 0 linreg ... -11.069278 0.047023 0.271822 +3 S01 0 linreg ... -25.345517 0.016892 0.693177 +4 S01 0 linreg ... -15.299470 0.118749 0.005380 +.. ... ... ... ... ... ... ... +662 S04 0 linreg ... -6.228437 -0.053016 0.096665 +663 S04 0 linreg ... -5.690539 0.026037 0.414816 +664 S04 0 linreg ... -9.717190 0.014684 0.645642 +665 S04 0 linreg ... -8.995283 0.001889 0.952839 +666 S04 0 linreg ... -7.429890 0.045048 0.158155 + +[667 rows x 18 columns] +imu_rr_S04_id0_combi5.0-12.0-15.0-17.0-20.0 +train +(35920, 10) +test +(287280, 9) +minirocket transforming... +---LinearRegression--- +adding new entry + subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval +0 S01 0 linreg ... -9.864563 0.038776 0.364940 +1 S01 0 linreg ... -11.875765 0.070097 0.101171 +2 S01 0 linreg ... -11.069278 0.047023 0.271822 +3 S01 0 linreg ... -25.345517 0.016892 0.693177 +4 S01 0 linreg ... -15.299470 0.118749 0.005380 +.. ... ... ... ... ... ... ... +663 S04 0 linreg ... -5.690539 0.026037 0.414816 +664 S04 0 linreg ... -9.717190 0.014684 0.645642 +665 S04 0 linreg ... -8.995283 0.001889 0.952839 +666 S04 0 linreg ... -7.429890 0.045048 0.158155 +667 S04 0 linreg ... -8.187567 0.046483 0.145306 + +[668 rows x 18 columns] +imu_rr_S04_id0_combi7.0-10.0-12.0-15.0-17.0 +train +(35920, 10) +test +(287280, 9) +minirocket transforming... +---LinearRegression--- +adding new entry + subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval +0 S01 0 linreg ... -9.864563 0.038776 0.364940 +1 S01 0 linreg ... -11.875765 0.070097 0.101171 +2 S01 0 linreg ... -11.069278 0.047023 0.271822 +3 S01 0 linreg ... -25.345517 0.016892 0.693177 +4 S01 0 linreg ... -15.299470 0.118749 0.005380 +.. ... ... ... ... ... ... ... +664 S04 0 linreg ... -9.717190 0.014684 0.645642 +665 S04 0 linreg ... -8.995283 0.001889 0.952839 +666 S04 0 linreg ... -7.429890 0.045048 0.158155 +667 S04 0 linreg ... -8.187567 0.046483 0.145306 +668 S04 0 linreg ... -2.763158 0.002265 0.943462 + +[669 rows x 18 columns] +imu_rr_S04_id0_combi7.0-10.0-12.0-15.0-20.0 +train +(35919, 10) +test +(287280, 9) +minirocket transforming... +---LinearRegression--- +adding new entry + subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval +0 S01 0 linreg ... -9.864563 0.038776 0.364940 +1 S01 0 linreg ... -11.875765 0.070097 0.101171 +2 S01 0 linreg ... -11.069278 0.047023 0.271822 +3 S01 0 linreg ... -25.345517 0.016892 0.693177 +4 S01 0 linreg ... -15.299470 0.118749 0.005380 +.. ... ... ... ... ... ... ... +665 S04 0 linreg ... -8.995283 0.001889 0.952839 +666 S04 0 linreg ... -7.429890 0.045048 0.158155 +667 S04 0 linreg ... -8.187567 0.046483 0.145306 +668 S04 0 linreg ... -2.763158 0.002265 0.943462 +669 S04 0 linreg ... -5.514833 0.018421 0.564022 + +[670 rows x 18 columns] +imu_rr_S04_id0_combi7.0-10.0-12.0-17.0-20.0 +train +(35919, 10) +test +(287280, 9) +minirocket transforming... +---LinearRegression--- +adding new entry + subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval +0 S01 0 linreg ... -9.864563 0.038776 0.364940 +1 S01 0 linreg ... -11.875765 0.070097 0.101171 +2 S01 0 linreg ... -11.069278 0.047023 0.271822 +3 S01 0 linreg ... -25.345517 0.016892 0.693177 +4 S01 0 linreg ... -15.299470 0.118749 0.005380 +.. ... ... ... ... ... ... ... +666 S04 0 linreg ... -7.429890 0.045048 0.158155 +667 S04 0 linreg ... -8.187567 0.046483 0.145306 +668 S04 0 linreg ... -2.763158 0.002265 0.943462 +669 S04 0 linreg ... -5.514833 0.018421 0.564022 +670 S04 0 linreg ... -4.653449 -0.004663 0.883909 + +[671 rows x 18 columns] +imu_rr_S04_id0_combi7.0-10.0-15.0-17.0-20.0 +train +(35919, 10) +test +(287280, 9) +minirocket transforming... +---LinearRegression--- +adding new entry + subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval +0 S01 0 linreg ... -9.864563 0.038776 0.364940 +1 S01 0 linreg ... -11.875765 0.070097 0.101171 +2 S01 0 linreg ... -11.069278 0.047023 0.271822 +3 S01 0 linreg ... -25.345517 0.016892 0.693177 +4 S01 0 linreg ... -15.299470 0.118749 0.005380 +.. ... ... ... ... ... ... ... +667 S04 0 linreg ... -8.187567 0.046483 0.145306 +668 S04 0 linreg ... -2.763158 0.002265 0.943462 +669 S04 0 linreg ... -5.514833 0.018421 0.564022 +670 S04 0 linreg ... -4.653449 -0.004663 0.883909 +671 S04 0 linreg ... -3.206832 0.039558 0.215283 + +[672 rows x 18 columns] +imu_rr_S04_id0_combi7.0-12.0-15.0-17.0-20.0 +train +(35919, 10) +test +(287280, 9) +minirocket transforming... +---LinearRegression--- +adding new entry + subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval +0 S01 0 linreg ... -9.864563 0.038776 0.364940 +1 S01 0 linreg ... -11.875765 0.070097 0.101171 +2 S01 0 linreg ... -11.069278 0.047023 0.271822 +3 S01 0 linreg ... -25.345517 0.016892 0.693177 +4 S01 0 linreg ... -15.299470 0.118749 0.005380 +.. ... ... ... ... ... ... ... +668 S04 0 linreg ... -2.763158 0.002265 0.943462 +669 S04 0 linreg ... -5.514833 0.018421 0.564022 +670 S04 0 linreg ... -4.653449 -0.004663 0.883909 +671 S04 0 linreg ... -3.206832 0.039558 0.215283 +672 S04 0 linreg ... -4.749055 0.068482 0.031803 + +[673 rows x 18 columns] +imu_rr_S04_id0_combi10.0-12.0-15.0-17.0-20.0 +train +(35919, 10) +test +(287280, 9) +minirocket transforming... +---LinearRegression--- +adding new entry + subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval +0 S01 0 linreg ... -9.864563 0.038776 0.364940 +1 S01 0 linreg ... -11.875765 0.070097 0.101171 +2 S01 0 linreg ... -11.069278 0.047023 0.271822 +3 S01 0 linreg ... -25.345517 0.016892 0.693177 +4 S01 0 linreg ... -15.299470 0.118749 0.005380 +.. ... ... ... ... ... ... ... +669 S04 0 linreg ... -5.514833 0.018421 0.564022 +670 S04 0 linreg ... -4.653449 -0.004663 0.883909 +671 S04 0 linreg ... -3.206832 0.039558 0.215283 +672 S04 0 linreg ... -4.749055 0.068482 0.031803 +673 S04 0 linreg ... -2.990206 0.137916 0.000014 + +[674 rows x 18 columns] +unable to find matching config id +Data id not set, auto assigned to: 0 +imu_rr_S05_id0_combi5.0-7.0-10.0-12.0-15.0 +train +(35920, 10) +test +(287296, 9) +minirocket transforming... +---LinearRegression--- +adding new entry + subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval +0 S01 0 linreg ... -9.864563 0.038776 0.364940 +1 S01 0 linreg ... -11.875765 0.070097 0.101171 +2 S01 0 linreg ... -11.069278 0.047023 0.271822 +3 S01 0 linreg ... -25.345517 0.016892 0.693177 +4 S01 0 linreg ... -15.299470 0.118749 0.005380 +.. ... ... ... ... ... ... ... +670 S04 0 linreg ... -4.653449 -0.004663 0.883909 +671 S04 0 linreg ... -3.206832 0.039558 0.215283 +672 S04 0 linreg ... -4.749055 0.068482 0.031803 +673 S04 0 linreg ... -2.990206 0.137916 0.000014 +674 S05 0 linreg ... -2.415757 0.039849 0.213093 + +[675 rows x 18 columns] +imu_rr_S05_id0_combi5.0-7.0-10.0-12.0-17.0 +train +(35920, 10) +test +(287296, 9) +minirocket transforming... +---LinearRegression--- +adding new entry + subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval +0 S01 0 linreg ... -9.864563 0.038776 0.364940 +1 S01 0 linreg ... -11.875765 0.070097 0.101171 +2 S01 0 linreg ... -11.069278 0.047023 0.271822 +3 S01 0 linreg ... -25.345517 0.016892 0.693177 +4 S01 0 linreg ... -15.299470 0.118749 0.005380 +.. ... ... ... ... ... ... ... +671 S04 0 linreg ... -3.206832 0.039558 0.215283 +672 S04 0 linreg ... -4.749055 0.068482 0.031803 +673 S04 0 linreg ... -2.990206 0.137916 0.000014 +674 S05 0 linreg ... -2.415757 0.039849 0.213093 +675 S05 0 linreg ... -2.600227 0.015332 0.632023 + +[676 rows x 18 columns] +imu_rr_S05_id0_combi5.0-7.0-10.0-12.0-20.0 +train +(35921, 10) +test +(287296, 9) +minirocket transforming... +---LinearRegression--- +adding new entry + subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval +0 S01 0 linreg ... -9.864563 0.038776 0.364940 +1 S01 0 linreg ... -11.875765 0.070097 0.101171 +2 S01 0 linreg ... -11.069278 0.047023 0.271822 +3 S01 0 linreg ... -25.345517 0.016892 0.693177 +4 S01 0 linreg ... -15.299470 0.118749 0.005380 +.. ... ... ... ... ... ... ... +672 S04 0 linreg ... -4.749055 0.068482 0.031803 +673 S04 0 linreg ... -2.990206 0.137916 0.000014 +674 S05 0 linreg ... -2.415757 0.039849 0.213093 +675 S05 0 linreg ... -2.600227 0.015332 0.632023 +676 S05 0 linreg ... -4.361863 0.078120 0.014539 + +[677 rows x 18 columns] +imu_rr_S05_id0_combi5.0-7.0-10.0-15.0-17.0 +train +(35919, 10) +test +(287296, 9) +minirocket transforming... +---LinearRegression--- +adding new entry + subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval +0 S01 0 linreg ... -9.864563 0.038776 0.364940 +1 S01 0 linreg ... -11.875765 0.070097 0.101171 +2 S01 0 linreg ... -11.069278 0.047023 0.271822 +3 S01 0 linreg ... -25.345517 0.016892 0.693177 +4 S01 0 linreg ... -15.299470 0.118749 0.005380 +.. ... ... ... ... ... ... ... +673 S04 0 linreg ... -2.990206 0.137916 0.000014 +674 S05 0 linreg ... -2.415757 0.039849 0.213093 +675 S05 0 linreg ... -2.600227 0.015332 0.632023 +676 S05 0 linreg ... -4.361863 0.078120 0.014539 +677 S05 0 linreg ... -2.362516 0.016706 0.601796 + +[678 rows x 18 columns] +imu_rr_S05_id0_combi5.0-7.0-10.0-15.0-20.0 +train +(35920, 10) +test +(287296, 9) +minirocket transforming... +---LinearRegression--- +adding new entry + subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval +0 S01 0 linreg ... -9.864563 0.038776 0.364940 +1 S01 0 linreg ... -11.875765 0.070097 0.101171 +2 S01 0 linreg ... -11.069278 0.047023 0.271822 +3 S01 0 linreg ... -25.345517 0.016892 0.693177 +4 S01 0 linreg ... -15.299470 0.118749 0.005380 +.. ... ... ... ... ... ... ... +674 S05 0 linreg ... -2.415757 0.039849 0.213093 +675 S05 0 linreg ... -2.600227 0.015332 0.632023 +676 S05 0 linreg ... -4.361863 0.078120 0.014539 +677 S05 0 linreg ... -2.362516 0.016706 0.601796 +678 S05 0 linreg ... -4.782338 0.058462 0.067625 + +[679 rows x 18 columns] +imu_rr_S05_id0_combi5.0-7.0-10.0-17.0-20.0 +train +(35920, 10) +test +(287296, 9) +minirocket transforming... +---LinearRegression--- +adding new entry + subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval +0 S01 0 linreg ... -9.864563 0.038776 0.364940 +1 S01 0 linreg ... -11.875765 0.070097 0.101171 +2 S01 0 linreg ... -11.069278 0.047023 0.271822 +3 S01 0 linreg ... -25.345517 0.016892 0.693177 +4 S01 0 linreg ... -15.299470 0.118749 0.005380 +.. ... ... ... ... ... ... ... +675 S05 0 linreg ... -2.600227 0.015332 0.632023 +676 S05 0 linreg ... -4.361863 0.078120 0.014539 +677 S05 0 linreg ... -2.362516 0.016706 0.601796 +678 S05 0 linreg ... -4.782338 0.058462 0.067625 +679 S05 0 linreg ... -2.583796 0.017433 0.586085 + +[680 rows x 18 columns] +imu_rr_S05_id0_combi5.0-7.0-12.0-15.0-17.0 +train +(35919, 10) +test +(287296, 9) +minirocket transforming... +---LinearRegression--- +adding new entry + subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval +0 S01 0 linreg ... -9.864563 0.038776 0.364940 +1 S01 0 linreg ... -11.875765 0.070097 0.101171 +2 S01 0 linreg ... -11.069278 0.047023 0.271822 +3 S01 0 linreg ... -25.345517 0.016892 0.693177 +4 S01 0 linreg ... -15.299470 0.118749 0.005380 +.. ... ... ... ... ... ... ... +676 S05 0 linreg ... -4.361863 0.078120 0.014539 +677 S05 0 linreg ... -2.362516 0.016706 0.601796 +678 S05 0 linreg ... -4.782338 0.058462 0.067625 +679 S05 0 linreg ... -2.583796 0.017433 0.586085 +680 S05 0 linreg ... -1.968589 0.016253 0.611684 + +[681 rows x 18 columns] +imu_rr_S05_id0_combi5.0-7.0-12.0-15.0-20.0 +train +(35920, 10) +test +(287296, 9) +minirocket transforming... +---LinearRegression--- +adding new entry + subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval +0 S01 0 linreg ... -9.864563 0.038776 0.364940 +1 S01 0 linreg ... -11.875765 0.070097 0.101171 +2 S01 0 linreg ... -11.069278 0.047023 0.271822 +3 S01 0 linreg ... -25.345517 0.016892 0.693177 +4 S01 0 linreg ... -15.299470 0.118749 0.005380 +.. ... ... ... ... ... ... ... +677 S05 0 linreg ... -2.362516 0.016706 0.601796 +678 S05 0 linreg ... -4.782338 0.058462 0.067625 +679 S05 0 linreg ... -2.583796 0.017433 0.586085 +680 S05 0 linreg ... -1.968589 0.016253 0.611684 +681 S05 0 linreg ... -3.657046 0.072715 0.022960 + +[682 rows x 18 columns] +imu_rr_S05_id0_combi5.0-7.0-12.0-17.0-20.0 +train +(35920, 10) +test +(287296, 9) +minirocket transforming... +---LinearRegression--- +adding new entry + subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval +0 S01 0 linreg ... -9.864563 0.038776 0.364940 +1 S01 0 linreg ... -11.875765 0.070097 0.101171 +2 S01 0 linreg ... -11.069278 0.047023 0.271822 +3 S01 0 linreg ... -25.345517 0.016892 0.693177 +4 S01 0 linreg ... -15.299470 0.118749 0.005380 +.. ... ... ... ... ... ... ... +678 S05 0 linreg ... -4.782338 0.058462 0.067625 +679 S05 0 linreg ... -2.583796 0.017433 0.586085 +680 S05 0 linreg ... -1.968589 0.016253 0.611684 +681 S05 0 linreg ... -3.657046 0.072715 0.022960 +682 S05 0 linreg ... -2.502070 0.014022 0.661411 + +[683 rows x 18 columns] +imu_rr_S05_id0_combi5.0-7.0-15.0-17.0-20.0 +train +(35919, 10) +test +(287296, 9) +minirocket transforming... +---LinearRegression--- +adding new entry + subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval +0 S01 0 linreg ... -9.864563 0.038776 0.364940 +1 S01 0 linreg ... -11.875765 0.070097 0.101171 +2 S01 0 linreg ... -11.069278 0.047023 0.271822 +3 S01 0 linreg ... -25.345517 0.016892 0.693177 +4 S01 0 linreg ... -15.299470 0.118749 0.005380 +.. ... ... ... ... ... ... ... +679 S05 0 linreg ... -2.583796 0.017433 0.586085 +680 S05 0 linreg ... -1.968589 0.016253 0.611684 +681 S05 0 linreg ... -3.657046 0.072715 0.022960 +682 S05 0 linreg ... -2.502070 0.014022 0.661411 +683 S05 0 linreg ... -2.785896 0.018241 0.568844 + +[684 rows x 18 columns] +imu_rr_S05_id0_combi5.0-10.0-12.0-15.0-17.0 +train +(35918, 10) +test +(287296, 9) +minirocket transforming... +---LinearRegression--- +adding new entry + subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval +0 S01 0 linreg ... -9.864563 0.038776 0.364940 +1 S01 0 linreg ... -11.875765 0.070097 0.101171 +2 S01 0 linreg ... -11.069278 0.047023 0.271822 +3 S01 0 linreg ... -25.345517 0.016892 0.693177 +4 S01 0 linreg ... -15.299470 0.118749 0.005380 +.. ... ... ... ... ... ... ... +680 S05 0 linreg ... -1.968589 0.016253 0.611684 +681 S05 0 linreg ... -3.657046 0.072715 0.022960 +682 S05 0 linreg ... -2.502070 0.014022 0.661411 +683 S05 0 linreg ... -2.785896 0.018241 0.568844 +684 S05 0 linreg ... -1.760125 0.035057 0.273396 + +[685 rows x 18 columns] +imu_rr_S05_id0_combi5.0-10.0-12.0-15.0-20.0 +train +(35919, 10) +test +(287296, 9) +minirocket transforming... +---LinearRegression--- +adding new entry + subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval +0 S01 0 linreg ... -9.864563 0.038776 0.364940 +1 S01 0 linreg ... -11.875765 0.070097 0.101171 +2 S01 0 linreg ... -11.069278 0.047023 0.271822 +3 S01 0 linreg ... -25.345517 0.016892 0.693177 +4 S01 0 linreg ... -15.299470 0.118749 0.005380 +.. ... ... ... ... ... ... ... +681 S05 0 linreg ... -3.657046 0.072715 0.022960 +682 S05 0 linreg ... -2.502070 0.014022 0.661411 +683 S05 0 linreg ... -2.785896 0.018241 0.568844 +684 S05 0 linreg ... -1.760125 0.035057 0.273396 +685 S05 0 linreg ... -2.716079 0.083430 0.009046 + +[686 rows x 18 columns] +imu_rr_S05_id0_combi5.0-10.0-12.0-17.0-20.0 +train +(35919, 10) +test +(287296, 9) +minirocket transforming... +---LinearRegression--- +adding new entry + subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval +0 S01 0 linreg ... -9.864563 0.038776 0.364940 +1 S01 0 linreg ... -11.875765 0.070097 0.101171 +2 S01 0 linreg ... -11.069278 0.047023 0.271822 +3 S01 0 linreg ... -25.345517 0.016892 0.693177 +4 S01 0 linreg ... -15.299470 0.118749 0.005380 +.. ... ... ... ... ... ... ... +682 S05 0 linreg ... -2.502070 0.014022 0.661411 +683 S05 0 linreg ... -2.785896 0.018241 0.568844 +684 S05 0 linreg ... -1.760125 0.035057 0.273396 +685 S05 0 linreg ... -2.716079 0.083430 0.009046 +686 S05 0 linreg ... -2.189085 0.044920 0.160414 + +[687 rows x 18 columns] +imu_rr_S05_id0_combi5.0-10.0-15.0-17.0-20.0 +train +(35918, 10) +test +(287296, 9) +minirocket transforming... +---LinearRegression--- +adding new entry + subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval +0 S01 0 linreg ... -9.864563 0.038776 0.364940 +1 S01 0 linreg ... -11.875765 0.070097 0.101171 +2 S01 0 linreg ... -11.069278 0.047023 0.271822 +3 S01 0 linreg ... -25.345517 0.016892 0.693177 +4 S01 0 linreg ... -15.299470 0.118749 0.005380 +.. ... ... ... ... ... ... ... +683 S05 0 linreg ... -2.785896 0.018241 0.568844 +684 S05 0 linreg ... -1.760125 0.035057 0.273396 +685 S05 0 linreg ... -2.716079 0.083430 0.009046 +686 S05 0 linreg ... -2.189085 0.044920 0.160414 +687 S05 0 linreg ... -2.174184 0.011584 0.717482 + +[688 rows x 18 columns] +imu_rr_S05_id0_combi5.0-12.0-15.0-17.0-20.0 +train +(35918, 10) +test +(287296, 9) +minirocket transforming... +---LinearRegression--- +adding new entry + subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval +0 S01 0 linreg ... -9.864563 0.038776 0.364940 +1 S01 0 linreg ... -11.875765 0.070097 0.101171 +2 S01 0 linreg ... -11.069278 0.047023 0.271822 +3 S01 0 linreg ... -25.345517 0.016892 0.693177 +4 S01 0 linreg ... -15.299470 0.118749 0.005380 +.. ... ... ... ... ... ... ... +684 S05 0 linreg ... -1.760125 0.035057 0.273396 +685 S05 0 linreg ... -2.716079 0.083430 0.009046 +686 S05 0 linreg ... -2.189085 0.044920 0.160414 +687 S05 0 linreg ... -2.174184 0.011584 0.717482 +688 S05 0 linreg ... -2.081208 0.016677 0.602433 + +[689 rows x 18 columns] +imu_rr_S05_id0_combi7.0-10.0-12.0-15.0-17.0 +train +(35919, 10) +test +(287296, 9) +minirocket transforming... +---LinearRegression--- +adding new entry + subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval +0 S01 0 linreg ... -9.864563 0.038776 0.364940 +1 S01 0 linreg ... -11.875765 0.070097 0.101171 +2 S01 0 linreg ... -11.069278 0.047023 0.271822 +3 S01 0 linreg ... -25.345517 0.016892 0.693177 +4 S01 0 linreg ... -15.299470 0.118749 0.005380 +.. ... ... ... ... ... ... ... +685 S05 0 linreg ... -2.716079 0.083430 0.009046 +686 S05 0 linreg ... -2.189085 0.044920 0.160414 +687 S05 0 linreg ... -2.174184 0.011584 0.717482 +688 S05 0 linreg ... -2.081208 0.016677 0.602433 +689 S05 0 linreg ... -1.511092 -0.025032 0.434240 + +[690 rows x 18 columns] +imu_rr_S05_id0_combi7.0-10.0-12.0-15.0-20.0 +train +(35920, 10) +test +(287296, 9) +minirocket transforming... +---LinearRegression--- +adding new entry + subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval +0 S01 0 linreg ... -9.864563 0.038776 0.364940 +1 S01 0 linreg ... -11.875765 0.070097 0.101171 +2 S01 0 linreg ... -11.069278 0.047023 0.271822 +3 S01 0 linreg ... -25.345517 0.016892 0.693177 +4 S01 0 linreg ... -15.299470 0.118749 0.005380 +.. ... ... ... ... ... ... ... +686 S05 0 linreg ... -2.189085 0.044920 0.160414 +687 S05 0 linreg ... -2.174184 0.011584 0.717482 +688 S05 0 linreg ... -2.081208 0.016677 0.602433 +689 S05 0 linreg ... -1.511092 -0.025032 0.434240 +690 S05 0 linreg ... -2.070153 0.040631 0.204247 + +[691 rows x 18 columns] +imu_rr_S05_id0_combi7.0-10.0-12.0-17.0-20.0 +train +(35920, 10) +test +(287296, 9) +minirocket transforming... +---LinearRegression--- +adding new entry + subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval +0 S01 0 linreg ... -9.864563 0.038776 0.364940 +1 S01 0 linreg ... -11.875765 0.070097 0.101171 +2 S01 0 linreg ... -11.069278 0.047023 0.271822 +3 S01 0 linreg ... -25.345517 0.016892 0.693177 +4 S01 0 linreg ... -15.299470 0.118749 0.005380 +.. ... ... ... ... ... ... ... +687 S05 0 linreg ... -2.174184 0.011584 0.717482 +688 S05 0 linreg ... -2.081208 0.016677 0.602433 +689 S05 0 linreg ... -1.511092 -0.025032 0.434240 +690 S05 0 linreg ... -2.070153 0.040631 0.204247 +691 S05 0 linreg ... -1.875947 -0.004190 0.895874 + +[692 rows x 18 columns] +imu_rr_S05_id0_combi7.0-10.0-15.0-17.0-20.0 +train +(35919, 10) +test +(287296, 9) +minirocket transforming... +---LinearRegression--- +adding new entry + subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval +0 S01 0 linreg ... -9.864563 0.038776 0.364940 +1 S01 0 linreg ... -11.875765 0.070097 0.101171 +2 S01 0 linreg ... -11.069278 0.047023 0.271822 +3 S01 0 linreg ... -25.345517 0.016892 0.693177 +4 S01 0 linreg ... -15.299470 0.118749 0.005380 +.. ... ... ... ... ... ... ... +688 S05 0 linreg ... -2.081208 0.016677 0.602433 +689 S05 0 linreg ... -1.511092 -0.025032 0.434240 +690 S05 0 linreg ... -2.070153 0.040631 0.204247 +691 S05 0 linreg ... -1.875947 -0.004190 0.895874 +692 S05 0 linreg ... -2.352758 -0.027399 0.392041 + +[693 rows x 18 columns] +imu_rr_S05_id0_combi7.0-12.0-15.0-17.0-20.0 +train +(35919, 10) +test +(287296, 9) +minirocket transforming... +---LinearRegression--- +adding new entry + subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval +0 S01 0 linreg ... -9.864563 0.038776 0.364940 +1 S01 0 linreg ... -11.875765 0.070097 0.101171 +2 S01 0 linreg ... -11.069278 0.047023 0.271822 +3 S01 0 linreg ... -25.345517 0.016892 0.693177 +4 S01 0 linreg ... -15.299470 0.118749 0.005380 +.. ... ... ... ... ... ... ... +689 S05 0 linreg ... -1.511092 -0.025032 0.434240 +690 S05 0 linreg ... -2.070153 0.040631 0.204247 +691 S05 0 linreg ... -1.875947 -0.004190 0.895874 +692 S05 0 linreg ... -2.352758 -0.027399 0.392041 +693 S05 0 linreg ... -1.805310 -0.016619 0.603699 + +[694 rows x 18 columns] +imu_rr_S05_id0_combi10.0-12.0-15.0-17.0-20.0 +train +(35918, 10) +test +(287296, 9) +minirocket transforming... +---LinearRegression--- +adding new entry + subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval +0 S01 0 linreg ... -9.864563 0.038776 0.364940 +1 S01 0 linreg ... -11.875765 0.070097 0.101171 +2 S01 0 linreg ... -11.069278 0.047023 0.271822 +3 S01 0 linreg ... -25.345517 0.016892 0.693177 +4 S01 0 linreg ... -15.299470 0.118749 0.005380 +.. ... ... ... ... ... ... ... +690 S05 0 linreg ... -2.070153 0.040631 0.204247 +691 S05 0 linreg ... -1.875947 -0.004190 0.895874 +692 S05 0 linreg ... -2.352758 -0.027399 0.392041 +693 S05 0 linreg ... -1.805310 -0.016619 0.603699 +694 S05 0 linreg ... -0.661158 -0.003639 0.909507 + +[695 rows x 18 columns] +unable to find matching config id +Data id not set, auto assigned to: 0 +imu_rr_S06_id0_combi5.0-7.0-10.0-12.0-15.0 +train +(35923, 10) +test +(287294, 9) +minirocket transforming... +---LinearRegression--- +adding new entry + subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval +0 S01 0 linreg ... -9.864563 0.038776 3.649402e-01 +1 S01 0 linreg ... -11.875765 0.070097 1.011711e-01 +2 S01 0 linreg ... -11.069278 0.047023 2.718220e-01 +3 S01 0 linreg ... -25.345517 0.016892 6.931765e-01 +4 S01 0 linreg ... -15.299470 0.118749 5.380273e-03 +.. ... ... ... ... ... ... ... +691 S05 0 linreg ... -1.875947 -0.004190 8.958740e-01 +692 S05 0 linreg ... -2.352758 -0.027399 3.920409e-01 +693 S05 0 linreg ... -1.805310 -0.016619 6.036987e-01 +694 S05 0 linreg ... -0.661158 -0.003639 9.095073e-01 +695 S06 0 linreg ... -2.247136 -0.192894 1.077985e-09 + +[696 rows x 18 columns] +imu_rr_S06_id0_combi5.0-7.0-10.0-12.0-17.0 +train +(35923, 10) +test +(287294, 9) +minirocket transforming... +---LinearRegression--- +adding new entry + subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval +0 S01 0 linreg ... -9.864563 0.038776 3.649402e-01 +1 S01 0 linreg ... -11.875765 0.070097 1.011711e-01 +2 S01 0 linreg ... -11.069278 0.047023 2.718220e-01 +3 S01 0 linreg ... -25.345517 0.016892 6.931765e-01 +4 S01 0 linreg ... -15.299470 0.118749 5.380273e-03 +.. ... ... ... ... ... ... ... +692 S05 0 linreg ... -2.352758 -0.027399 3.920409e-01 +693 S05 0 linreg ... -1.805310 -0.016619 6.036987e-01 +694 S05 0 linreg ... -0.661158 -0.003639 9.095073e-01 +695 S06 0 linreg ... -2.247136 -0.192894 1.077985e-09 +696 S06 0 linreg ... -2.163356 -0.195705 6.092501e-10 + +[697 rows x 18 columns] +imu_rr_S06_id0_combi5.0-7.0-10.0-12.0-20.0 +train +(35923, 10) +test +(287294, 9) +minirocket transforming... +---LinearRegression--- +adding new entry + subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval +0 S01 0 linreg ... -9.864563 0.038776 3.649402e-01 +1 S01 0 linreg ... -11.875765 0.070097 1.011711e-01 +2 S01 0 linreg ... -11.069278 0.047023 2.718220e-01 +3 S01 0 linreg ... -25.345517 0.016892 6.931765e-01 +4 S01 0 linreg ... -15.299470 0.118749 5.380273e-03 +.. ... ... ... ... ... ... ... +693 S05 0 linreg ... -1.805310 -0.016619 6.036987e-01 +694 S05 0 linreg ... -0.661158 -0.003639 9.095073e-01 +695 S06 0 linreg ... -2.247136 -0.192894 1.077985e-09 +696 S06 0 linreg ... -2.163356 -0.195705 6.092501e-10 +697 S06 0 linreg ... -2.392906 -0.216657 6.608166e-12 + +[698 rows x 18 columns] +imu_rr_S06_id0_combi5.0-7.0-10.0-15.0-17.0 +train +(35923, 10) +test +(287294, 9) +minirocket transforming... +---LinearRegression--- +adding new entry + subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval +0 S01 0 linreg ... -9.864563 0.038776 3.649402e-01 +1 S01 0 linreg ... -11.875765 0.070097 1.011711e-01 +2 S01 0 linreg ... -11.069278 0.047023 2.718220e-01 +3 S01 0 linreg ... -25.345517 0.016892 6.931765e-01 +4 S01 0 linreg ... -15.299470 0.118749 5.380273e-03 +.. ... ... ... ... ... ... ... +694 S05 0 linreg ... -0.661158 -0.003639 9.095073e-01 +695 S06 0 linreg ... -2.247136 -0.192894 1.077985e-09 +696 S06 0 linreg ... -2.163356 -0.195705 6.092501e-10 +697 S06 0 linreg ... -2.392906 -0.216657 6.608166e-12 +698 S06 0 linreg ... -1.938681 -0.213730 1.279826e-11 + +[699 rows x 18 columns] +imu_rr_S06_id0_combi5.0-7.0-10.0-15.0-20.0 +train +(35923, 10) +test +(287294, 9) +minirocket transforming... +---LinearRegression--- +adding new entry + subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval +0 S01 0 linreg ... -9.864563 0.038776 3.649402e-01 +1 S01 0 linreg ... -11.875765 0.070097 1.011711e-01 +2 S01 0 linreg ... -11.069278 0.047023 2.718220e-01 +3 S01 0 linreg ... -25.345517 0.016892 6.931765e-01 +4 S01 0 linreg ... -15.299470 0.118749 5.380273e-03 +.. ... ... ... ... ... ... ... +695 S06 0 linreg ... -2.247136 -0.192894 1.077985e-09 +696 S06 0 linreg ... -2.163356 -0.195705 6.092501e-10 +697 S06 0 linreg ... -2.392906 -0.216657 6.608166e-12 +698 S06 0 linreg ... -1.938681 -0.213730 1.279826e-11 +699 S06 0 linreg ... -2.254942 -0.235478 7.493587e-14 + +[700 rows x 18 columns] +imu_rr_S06_id0_combi5.0-7.0-10.0-17.0-20.0 +train +(35923, 10) +test +(287294, 9) +minirocket transforming... +---LinearRegression--- +adding new entry + subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval +0 S01 0 linreg ... -9.864563 0.038776 3.649402e-01 +1 S01 0 linreg ... -11.875765 0.070097 1.011711e-01 +2 S01 0 linreg ... -11.069278 0.047023 2.718220e-01 +3 S01 0 linreg ... -25.345517 0.016892 6.931765e-01 +4 S01 0 linreg ... -15.299470 0.118749 5.380273e-03 +.. ... ... ... ... ... ... ... +696 S06 0 linreg ... -2.163356 -0.195705 6.092501e-10 +697 S06 0 linreg ... -2.392906 -0.216657 6.608166e-12 +698 S06 0 linreg ... -1.938681 -0.213730 1.279826e-11 +699 S06 0 linreg ... -2.254942 -0.235478 7.493587e-14 +700 S06 0 linreg ... -2.415952 -0.214803 1.005513e-11 + +[701 rows x 18 columns] +imu_rr_S06_id0_combi5.0-7.0-12.0-15.0-17.0 +train +(35923, 10) +test +(287294, 9) +minirocket transforming... +---LinearRegression--- +adding new entry + subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval +0 S01 0 linreg ... -9.864563 0.038776 3.649402e-01 +1 S01 0 linreg ... -11.875765 0.070097 1.011711e-01 +2 S01 0 linreg ... -11.069278 0.047023 2.718220e-01 +3 S01 0 linreg ... -25.345517 0.016892 6.931765e-01 +4 S01 0 linreg ... -15.299470 0.118749 5.380273e-03 +.. ... ... ... ... ... ... ... +697 S06 0 linreg ... -2.392906 -0.216657 6.608166e-12 +698 S06 0 linreg ... -1.938681 -0.213730 1.279826e-11 +699 S06 0 linreg ... -2.254942 -0.235478 7.493587e-14 +700 S06 0 linreg ... -2.415952 -0.214803 1.005513e-11 +701 S06 0 linreg ... -1.854598 -0.184758 5.358792e-09 + +[702 rows x 18 columns] +imu_rr_S06_id0_combi5.0-7.0-12.0-15.0-20.0 +train +(35923, 10) +test +(287294, 9) +minirocket transforming... +---LinearRegression--- +adding new entry + subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval +0 S01 0 linreg ... -9.864563 0.038776 3.649402e-01 +1 S01 0 linreg ... -11.875765 0.070097 1.011711e-01 +2 S01 0 linreg ... -11.069278 0.047023 2.718220e-01 +3 S01 0 linreg ... -25.345517 0.016892 6.931765e-01 +4 S01 0 linreg ... -15.299470 0.118749 5.380273e-03 +.. ... ... ... ... ... ... ... +698 S06 0 linreg ... -1.938681 -0.213730 1.279826e-11 +699 S06 0 linreg ... -2.254942 -0.235478 7.493587e-14 +700 S06 0 linreg ... -2.415952 -0.214803 1.005513e-11 +701 S06 0 linreg ... -1.854598 -0.184758 5.358792e-09 +702 S06 0 linreg ... -2.063744 -0.187555 3.112496e-09 + +[703 rows x 18 columns] +imu_rr_S06_id0_combi5.0-7.0-12.0-17.0-20.0 +train +(35923, 10) +test +(287294, 9) +minirocket transforming... +---LinearRegression--- +adding new entry + subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval +0 S01 0 linreg ... -9.864563 0.038776 3.649402e-01 +1 S01 0 linreg ... -11.875765 0.070097 1.011711e-01 +2 S01 0 linreg ... -11.069278 0.047023 2.718220e-01 +3 S01 0 linreg ... -25.345517 0.016892 6.931765e-01 +4 S01 0 linreg ... -15.299470 0.118749 5.380273e-03 +.. ... ... ... ... ... ... ... +699 S06 0 linreg ... -2.254942 -0.235478 7.493587e-14 +700 S06 0 linreg ... -2.415952 -0.214803 1.005513e-11 +701 S06 0 linreg ... -1.854598 -0.184758 5.358792e-09 +702 S06 0 linreg ... -2.063744 -0.187555 3.112496e-09 +703 S06 0 linreg ... -2.767758 -0.160519 4.211178e-07 + +[704 rows x 18 columns] +imu_rr_S06_id0_combi5.0-7.0-15.0-17.0-20.0 +train +(35923, 10) +test +(287294, 9) +minirocket transforming... +---LinearRegression--- +adding new entry + subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval +0 S01 0 linreg ... -9.864563 0.038776 3.649402e-01 +1 S01 0 linreg ... -11.875765 0.070097 1.011711e-01 +2 S01 0 linreg ... -11.069278 0.047023 2.718220e-01 +3 S01 0 linreg ... -25.345517 0.016892 6.931765e-01 +4 S01 0 linreg ... -15.299470 0.118749 5.380273e-03 +.. ... ... ... ... ... ... ... +700 S06 0 linreg ... -2.415952 -0.214803 1.005513e-11 +701 S06 0 linreg ... -1.854598 -0.184758 5.358792e-09 +702 S06 0 linreg ... -2.063744 -0.187555 3.112496e-09 +703 S06 0 linreg ... -2.767758 -0.160519 4.211178e-07 +704 S06 0 linreg ... -2.560870 -0.201308 1.904299e-10 + +[705 rows x 18 columns] +imu_rr_S06_id0_combi5.0-10.0-12.0-15.0-17.0 +train +(35922, 10) +test +(287294, 9) +minirocket transforming... +---LinearRegression--- +adding new entry + subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval +0 S01 0 linreg ... -9.864563 0.038776 3.649402e-01 +1 S01 0 linreg ... -11.875765 0.070097 1.011711e-01 +2 S01 0 linreg ... -11.069278 0.047023 2.718220e-01 +3 S01 0 linreg ... -25.345517 0.016892 6.931765e-01 +4 S01 0 linreg ... -15.299470 0.118749 5.380273e-03 +.. ... ... ... ... ... ... ... +701 S06 0 linreg ... -1.854598 -0.184758 5.358792e-09 +702 S06 0 linreg ... -2.063744 -0.187555 3.112496e-09 +703 S06 0 linreg ... -2.767758 -0.160519 4.211178e-07 +704 S06 0 linreg ... -2.560870 -0.201308 1.904299e-10 +705 S06 0 linreg ... -1.570174 -0.182665 8.003180e-09 + +[706 rows x 18 columns] +imu_rr_S06_id0_combi5.0-10.0-12.0-15.0-20.0 +train +(35922, 10) +test +(287294, 9) +minirocket transforming... +---LinearRegression--- +adding new entry + subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval +0 S01 0 linreg ... -9.864563 0.038776 3.649402e-01 +1 S01 0 linreg ... -11.875765 0.070097 1.011711e-01 +2 S01 0 linreg ... -11.069278 0.047023 2.718220e-01 +3 S01 0 linreg ... -25.345517 0.016892 6.931765e-01 +4 S01 0 linreg ... -15.299470 0.118749 5.380273e-03 +.. ... ... ... ... ... ... ... +702 S06 0 linreg ... -2.063744 -0.187555 3.112496e-09 +703 S06 0 linreg ... -2.767758 -0.160519 4.211178e-07 +704 S06 0 linreg ... -2.560870 -0.201308 1.904299e-10 +705 S06 0 linreg ... -1.570174 -0.182665 8.003180e-09 +706 S06 0 linreg ... -1.692031 -0.200430 2.290169e-10 + +[707 rows x 18 columns] +imu_rr_S06_id0_combi5.0-10.0-12.0-17.0-20.0 +train +(35922, 10) +test +(287294, 9) +minirocket transforming... +---LinearRegression--- +adding new entry + subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval +0 S01 0 linreg ... -9.864563 0.038776 3.649402e-01 +1 S01 0 linreg ... -11.875765 0.070097 1.011711e-01 +2 S01 0 linreg ... -11.069278 0.047023 2.718220e-01 +3 S01 0 linreg ... -25.345517 0.016892 6.931765e-01 +4 S01 0 linreg ... -15.299470 0.118749 5.380273e-03 +.. ... ... ... ... ... ... ... +703 S06 0 linreg ... -2.767758 -0.160519 4.211178e-07 +704 S06 0 linreg ... -2.560870 -0.201308 1.904299e-10 +705 S06 0 linreg ... -1.570174 -0.182665 8.003180e-09 +706 S06 0 linreg ... -1.692031 -0.200430 2.290169e-10 +707 S06 0 linreg ... -2.237495 -0.162434 3.050056e-07 + +[708 rows x 18 columns] +imu_rr_S06_id0_combi5.0-10.0-15.0-17.0-20.0 +train +(35922, 10) +test +(287294, 9) +minirocket transforming... +---LinearRegression--- +adding new entry + subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval +0 S01 0 linreg ... -9.864563 0.038776 3.649402e-01 +1 S01 0 linreg ... -11.875765 0.070097 1.011711e-01 +2 S01 0 linreg ... -11.069278 0.047023 2.718220e-01 +3 S01 0 linreg ... -25.345517 0.016892 6.931765e-01 +4 S01 0 linreg ... -15.299470 0.118749 5.380273e-03 +.. ... ... ... ... ... ... ... +704 S06 0 linreg ... -2.560870 -0.201308 1.904299e-10 +705 S06 0 linreg ... -1.570174 -0.182665 8.003180e-09 +706 S06 0 linreg ... -1.692031 -0.200430 2.290169e-10 +707 S06 0 linreg ... -2.237495 -0.162434 3.050056e-07 +708 S06 0 linreg ... -2.105454 -0.165880 1.690696e-07 + +[709 rows x 18 columns] +imu_rr_S06_id0_combi5.0-12.0-15.0-17.0-20.0 +train +(35922, 10) +test +(287294, 9) +minirocket transforming... +---LinearRegression--- +adding new entry + subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval +0 S01 0 linreg ... -9.864563 0.038776 3.649402e-01 +1 S01 0 linreg ... -11.875765 0.070097 1.011711e-01 +2 S01 0 linreg ... -11.069278 0.047023 2.718220e-01 +3 S01 0 linreg ... -25.345517 0.016892 6.931765e-01 +4 S01 0 linreg ... -15.299470 0.118749 5.380273e-03 +.. ... ... ... ... ... ... ... +705 S06 0 linreg ... -1.570174 -0.182665 8.003180e-09 +706 S06 0 linreg ... -1.692031 -0.200430 2.290169e-10 +707 S06 0 linreg ... -2.237495 -0.162434 3.050056e-07 +708 S06 0 linreg ... -2.105454 -0.165880 1.690696e-07 +709 S06 0 linreg ... -2.120085 -0.145204 4.853763e-06 + +[710 rows x 18 columns] +imu_rr_S06_id0_combi7.0-10.0-12.0-15.0-17.0 +train +(35921, 10) +test +(287294, 9) +minirocket transforming... +---LinearRegression--- +adding new entry + subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval +0 S01 0 linreg ... -9.864563 0.038776 3.649402e-01 +1 S01 0 linreg ... -11.875765 0.070097 1.011711e-01 +2 S01 0 linreg ... -11.069278 0.047023 2.718220e-01 +3 S01 0 linreg ... -25.345517 0.016892 6.931765e-01 +4 S01 0 linreg ... -15.299470 0.118749 5.380273e-03 +.. ... ... ... ... ... ... ... +706 S06 0 linreg ... -1.692031 -0.200430 2.290169e-10 +707 S06 0 linreg ... -2.237495 -0.162434 3.050056e-07 +708 S06 0 linreg ... -2.105454 -0.165880 1.690696e-07 +709 S06 0 linreg ... -2.120085 -0.145204 4.853763e-06 +710 S06 0 linreg ... -1.588710 -0.162305 3.117620e-07 + +[711 rows x 18 columns] +imu_rr_S06_id0_combi7.0-10.0-12.0-15.0-20.0 +train +(35921, 10) +test +(287294, 9) +minirocket transforming... +---LinearRegression--- +adding new entry + subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval +0 S01 0 linreg ... -9.864563 0.038776 3.649402e-01 +1 S01 0 linreg ... -11.875765 0.070097 1.011711e-01 +2 S01 0 linreg ... -11.069278 0.047023 2.718220e-01 +3 S01 0 linreg ... -25.345517 0.016892 6.931765e-01 +4 S01 0 linreg ... -15.299470 0.118749 5.380273e-03 +.. ... ... ... ... ... ... ... +707 S06 0 linreg ... -2.237495 -0.162434 3.050056e-07 +708 S06 0 linreg ... -2.105454 -0.165880 1.690696e-07 +709 S06 0 linreg ... -2.120085 -0.145204 4.853763e-06 +710 S06 0 linreg ... -1.588710 -0.162305 3.117620e-07 +711 S06 0 linreg ... -2.382225 -0.203053 1.316660e-10 + +[712 rows x 18 columns] +imu_rr_S06_id0_combi7.0-10.0-12.0-17.0-20.0 +train +(35921, 10) +test +(287294, 9) +minirocket transforming... +---LinearRegression--- +adding new entry + subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval +0 S01 0 linreg ... -9.864563 0.038776 3.649402e-01 +1 S01 0 linreg ... -11.875765 0.070097 1.011711e-01 +2 S01 0 linreg ... -11.069278 0.047023 2.718220e-01 +3 S01 0 linreg ... -25.345517 0.016892 6.931765e-01 +4 S01 0 linreg ... -15.299470 0.118749 5.380273e-03 +.. ... ... ... ... ... ... ... +708 S06 0 linreg ... -2.105454 -0.165880 1.690696e-07 +709 S06 0 linreg ... -2.120085 -0.145204 4.853763e-06 +710 S06 0 linreg ... -1.588710 -0.162305 3.117620e-07 +711 S06 0 linreg ... -2.382225 -0.203053 1.316660e-10 +712 S06 0 linreg ... -2.299251 -0.189599 2.081305e-09 + +[713 rows x 18 columns] +imu_rr_S06_id0_combi7.0-10.0-15.0-17.0-20.0 +train +(35921, 10) +test +(287294, 9) +minirocket transforming... +---LinearRegression--- +adding new entry + subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval +0 S01 0 linreg ... -9.864563 0.038776 3.649402e-01 +1 S01 0 linreg ... -11.875765 0.070097 1.011711e-01 +2 S01 0 linreg ... -11.069278 0.047023 2.718220e-01 +3 S01 0 linreg ... -25.345517 0.016892 6.931765e-01 +4 S01 0 linreg ... -15.299470 0.118749 5.380273e-03 +.. ... ... ... ... ... ... ... +709 S06 0 linreg ... -2.120085 -0.145204 4.853763e-06 +710 S06 0 linreg ... -1.588710 -0.162305 3.117620e-07 +711 S06 0 linreg ... -2.382225 -0.203053 1.316660e-10 +712 S06 0 linreg ... -2.299251 -0.189599 2.081305e-09 +713 S06 0 linreg ... -2.151206 -0.211608 2.054503e-11 + +[714 rows x 18 columns] +imu_rr_S06_id0_combi7.0-12.0-15.0-17.0-20.0 +train +(35921, 10) +test +(287294, 9) +minirocket transforming... +---LinearRegression--- +adding new entry + subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval +0 S01 0 linreg ... -9.864563 0.038776 3.649402e-01 +1 S01 0 linreg ... -11.875765 0.070097 1.011711e-01 +2 S01 0 linreg ... -11.069278 0.047023 2.718220e-01 +3 S01 0 linreg ... -25.345517 0.016892 6.931765e-01 +4 S01 0 linreg ... -15.299470 0.118749 5.380273e-03 +.. ... ... ... ... ... ... ... +710 S06 0 linreg ... -1.588710 -0.162305 3.117620e-07 +711 S06 0 linreg ... -2.382225 -0.203053 1.316660e-10 +712 S06 0 linreg ... -2.299251 -0.189599 2.081305e-09 +713 S06 0 linreg ... -2.151206 -0.211608 2.054503e-11 +714 S06 0 linreg ... -2.041921 -0.177991 1.928055e-08 + +[715 rows x 18 columns] +imu_rr_S06_id0_combi10.0-12.0-15.0-17.0-20.0 +train +(35920, 10) +test +(287294, 9) +minirocket transforming... +---LinearRegression--- +adding new entry + subject config_id mdl_str ... r2 pearsonr_coeff pearsonr_pval +0 S01 0 linreg ... -9.864563 0.038776 3.649402e-01 +1 S01 0 linreg ... -11.875765 0.070097 1.011711e-01 +2 S01 0 linreg ... -11.069278 0.047023 2.718220e-01 +3 S01 0 linreg ... -25.345517 0.016892 6.931765e-01 +4 S01 0 linreg ... -15.299470 0.118749 5.380273e-03 +.. ... ... ... ... ... ... ... +711 S06 0 linreg ... -2.382225 -0.203053 1.316660e-10 +712 S06 0 linreg ... -2.299251 -0.189599 2.081305e-09 +713 S06 0 linreg ... -2.151206 -0.211608 2.054503e-11 +714 S06 0 linreg ... -2.041921 -0.177991 1.928055e-08 +715 S06 0 linreg ... -0.976966 -0.195415 6.463433e-10 + +[716 rows x 18 columns] +Namespace(data_input='imu', feature_method='minirocket', lbl_str='pss', method='ml', model='linreg', overwrite=0, subject=-1, test_standing=1, train_len=5, win_shift=0.2, win_size=12) diff --git a/regress_rr.py b/regress_rr.py index 112f84c2d4d26f83ffb6f3f67735825deb3d93df..506396864b80d539537d0d7945c655f788aa6cfe 100644 --- a/regress_rr.py +++ b/regress_rr.py @@ -70,6 +70,7 @@ from sktime.transformations.panel.rocket import ( from config import WINDOW_SIZE, WINDOW_SHIFT, IMU_FS, DATA_DIR, BR_FS\ , FS_RESAMPLE, PPG_FS +N_SUBJECT_MAX = 6 IMU_COLS = ['acc_x', 'acc_y', 'acc_z', 'gyro_x', 'gyro_y', 'gyro_z'] def utc_to_local(utc_dt, tz=None): @@ -1422,8 +1423,8 @@ def arg_parser(): 'elastic'], ) parser.add_argument("-s", '--subject', type=int, - default=2, - choices=list(range(1,5))+[-1], + default=1, + choices=list(range(1,N_SUBJECT_MAX))+[-1], ) parser.add_argument("-f", '--feature_method', type=str, default='minirocket', @@ -1466,7 +1467,6 @@ def arg_parser(): if __name__ == '__main__': np.random.seed(100) - n_subject_max = 4 args = arg_parser() # Load command line arguments @@ -1485,7 +1485,7 @@ if __name__ == '__main__': print(args) assert train_len>0,"--train_len must be an integer greater than 0" - subject_pre_string = 'Pilot' + subject_pre_string = 'S' # Pilot / S if subject > 0 and method == 'ml': subject = subject_pre_string+str(subject).zfill(2) @@ -1503,7 +1503,7 @@ if __name__ == '__main__': ) elif subject <= 0 and method == 'ml': subjects = [subject_pre_string+str(i).zfill(2) for i in \ - range(2, n_subject_max+1)] + range(1, N_SUBJECT_MAX+1)] rr_func = partial(sens_rr_model, window_size=window_size, @@ -1530,7 +1530,7 @@ if __name__ == '__main__': test_standing=test_standing) elif subject <= 0 and method == 'ml': subjects = [subject_pre_string+str(i).zfill(2) for i in \ - range(2, n_subject_max+1)] + range(1, n_subject_max+1)] rr_func = partial(sens_rr_model, window_size=window_size,