Commit 0045094d authored by PTSEFTON's avatar PTSEFTON
Browse files

Added GTM test data in as files rather than a referenced repo

parent b286ff5f
GTM @ 132249b4
Subproject commit 132249b4d9783ffceca13af23e189717d317b236
<html>
<head>
<style>
table {
width: 90%;
text-align: left;
vertical-align: top;
margin-bottom: 2em;
}
td {
margin-right: 2em;
white-space: normal;
}
details {
margin-left: 2em;
}
.break {
word-break: break-all;
}
div.collection {
margin-left: +1em;
}
</style>
<script type="application/ld+json">
{
"@id": "https://doi.org/10.4225/59/59e3d6d08faa9",
"@type": [
"Dataset"
],
"contact": [
{
"@id": "http://orcid.org/0000-0002-8367-6908"
}
],
"citation": [
{
"@id": "http://dx.doi.org/10.1109/TCYB.2014.2386282"
}
],
"path": [
"./"
],
"creator": [
{
"@id": "http://orcid.org/0000-0002-8367-6908"
},
{
"@id": "http://orcid.org/0000-0003-0690-4732"
},
{
"@id": "http://orcid.org/0000-0003-3960-0583"
},
{
"@id": "https://orcid.org/0000-0002-6953-3986"
}
],
"datePublished": [
"2018-03-10"
],
"description": [
"This demo is the sampling inference for Graph Topic Model, and more details about this model can be found in the following reference: @ARTICLE{7015568, author={J. Xuan and J. Lu and G. Zhang and X. Luo}, journal={IEEE Transactions on Cybernetics}, title={Topic Model for Graph Mining}, year={2015}, volume={45}, A Markov chain Monte Carlo (MCMC) algorithm is developed and implemented to inference the Graph Topic Model (GTM). GTM is a probabilistic graphical model for the data represented by graph structure, e.g., chemical formulas or documents."
],
"hasPart": [
{
"@id": "gtm_gs.m"
},
{
"@id": "LICENSE"
},
{
"@id": "README.txt"
},
{
"@id": "test_gtm.m"
}
],
"identifier": [
"https://doi.org/10.4225/59/59e3d6d08faa9"
],
"license": [
{
"@id": "https://www.gnu.org/licenses/gpl-3.0.en.html"
}
],
"name": [
"GTM"
],
"publisher": [
"University of Technology Sydney"
]
}
</script>
<link rel="stylesheet"
href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/css/bootstrap.min.css"
integrity="sha384-BVYiiSIFeK1dGmJRAkycuHAHRg32OmUcww7on3RYdg4Va+PmSTsz/K68vbdEjh4u"
crossorigin="anonymous"/>
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/4.7.0/css/font-awesome.min.css">
<meta charset='utf-8'/>
</head>
<body>
<nav class="navbar navbar-inverse">
<ul class="nav navbar-nav" >
<li >
<a href="" class="active"><button type="button" class="btn btn-default btn-sm"><span class="glyphicon glyphicon-home"></span>&nbsp;GTM</button></a></li>
</ul>
</nav>
<div class="container">
<div class="jumbotron">
<h3>GTM</h3>
<h4></h4>
</div>
<p>A machine-readable version of this page, created at 2018-09-06T23:50:26.371Z is available <a href='CATALOG.json'>CATALOG.json</a></p>
<table class = 'table' id = 'https://doi.org/10.4225/59/59e3d6d08faa9'
><hr
><tr
><th style = 'white-space: nowrap; width: 1%;'
>@id</th
><td
><a href = 'https://doi.org/10.4225/59/59e3d6d08faa9' class = 'fa fa-external-link' title = 'GTM'
>https://doi.org/10.4225/59/59e3d6d08faa9</a
></td
></tr
><tr
><th
><span
>name<sup
><a href = 'http://schema.org/name' title = 'Definition of: name'
>?</a
></sup
></span
></th
><td
><b
>GTM</b
></td
></tr
><tr
><th
>@type</th
><td
><span
>Dataset<sup
><a href = 'http://schema.org/Dataset' title = 'Definition of: Dataset'
>?</a
></sup
></span
></td
></tr
><tr
><th
><span
>description<sup
><a href = 'http://schema.org/description' title = 'Definition of: description'
>?</a
></sup
></span
></th
><td
>This demo is the sampling inference for Graph Topic Model, and more details about this model can be found in the following reference: @ARTICLE{7015568, author={J. Xuan and J. Lu and G. Zhang and X. Luo}, journal={IEEE Transactions on Cybernetics}, title={Topic Model for Graph Mining}, year={2015}, volume={45}, A Markov chain Monte Carlo (MCMC) algorithm is developed and implemented to inference the Graph Topic Model (GTM). GTM is a probabilistic graphical model for the data represented by graph structure, e.g., chemical formulas or documents.</td
></tr
><tr
><th
><span
>datePublished<sup
><a href = 'http://schema.org/datePublished' title = 'Definition of: datePublished'
>?</a
></sup
></span
></th
><td
>2018-03-10</td
></tr
><tr
><th
><span
>creator<sup
><a href = 'http://schema.org/creator' title = 'Definition of: creator'
>?</a
></sup
></span
></th
><td
><ul
><li
><a href = './CATALOG/http:__orcid.org_0000-0002-8367-6908.html'
>J. Xuan</a
></li
><li
><a href = './CATALOG/http:__orcid.org_0000-0003-0690-4732.html'
>J. Lu</a
></li
><li
><a href = './CATALOG/http:__orcid.org_0000-0003-3960-0583.html'
>G. Zhang</a
></li
><li
><a href = './CATALOG/https:__orcid.org_0000-0002-6953-3986.html'
>X. Luo</a
></li
></ul
></td
></tr
><tr
><th
><span
>path<sup
><a href = 'http://schema.org/contentUrl' title = 'Definition of: path'
>?</a
></sup
></span
></th
><td
><a href = './'
>.</a
></td
></tr
><tr
><th
><span
>contact<sup
><a href = 'http://schema.org/accountablePerson' title = 'Definition of: contact'
>?</a
></sup
></span
></th
><td
><a href = './CATALOG/http:__orcid.org_0000-0002-8367-6908.html'
>J. Xuan</a
></td
></tr
><tr
><th
><span
>citation<sup
><a href = 'http://schema.org/citation' title = 'Definition of: citation'
>?</a
></sup
></span
></th
><td
><a href = './CATALOG/http:__dx.doi.org_10.1109_TCYB.2014.2386282.html'
>Topic Model for Graph Mining</a
></td
></tr
><tr
><th
><span
>hasPart<sup
><a href = 'http://schema.org/hasPart' title = 'Definition of: hasPart'
>?</a
></sup
></span
></th
><td
><ul
><li
><a href = './CATALOG/gtm_gs.m.html'
>gtm_gs.m</a
></li
><li
><a href = './CATALOG/LICENSE.html'
>LICENSE</a
></li
><li
><a href = './CATALOG/README.txt.html'
>README.txt</a
></li
><li
><a href = './CATALOG/test_gtm.m.html'
>test_gtm.m</a
></li
></ul
></td
></tr
><tr
><th
><span
>license<sup
><a href = 'http://schema.org/license' title = 'Definition of: license'
>?</a
></sup
></span
></th
><td
><a href = './CATALOG/https:__www.gnu.org_licenses_gpl-3.0.en.html.html'
>GPL 3</a
></td
></tr
><tr
><th
><span
>publisher<sup
><a href = 'http://schema.org/publisher' title = 'Definition of: publisher'
>?</a
></sup
></span
></th
><td
>University of Technology Sydney</td
></tr
></table
>
<p>This file was created at 2018-09-06T23:50:26.381Z by
<a href='https://code.research.uts.edu.au/eresearch/calcytejs'>
Calcyte</a> which implements the <a href='https://github.com/UTS-eResearch/datacrate/blob/master/spec/0.3/data_crate_specification_v0.3.md'>
Draft DataCrate Packaging format</a>, version 0.3
</p>
</body>
</html>
{
"@graph": [
{
"@id": "LICENSE",
"@type": "File",
"*MISSING-FILE": "1",
"contentSize": "35049",
"encodingFormat": "Plain Text File",
"fileFormat": "http://www.nationalarchives.gov.uk/PRONOM/x-fmt/111",
"filename": [],
"license": "GPL 3",
"name": "LICENSE"
},
{
"@id": "README.txt",
"@type": "File",
"*MISSING-FILE": "1",
"contentSize": "984",
"encodingFormat": "Plain Text File",
"fileFormat": "http://www.nationalarchives.gov.uk/PRONOM/x-fmt/111",
"filename": [],
"license": "GPL 3",
"name": "README.txt"
},
{
"@id": "gtm_gs.m",
"@type": "File",
"*MISSING-FILE": "1",
"contentSize": "12656",
"encodingFormat": "Plain Text File",
"fileFormat": "http://www.nationalarchives.gov.uk/PRONOM/x-fmt/111",
"filename": [],
"license": "GPL 3",
"name": "gtm_gs.m"
},
{
"@id": "http://dx.doi.org/10.1109/TCYB.2014.2386282",
"@type": "ScholarlyArticle",
"journal": "IEEE Transactions on Cybernetics",
"creator": [
{
"@id": "http://orcid.org/0000-0002-8367-6908"
},
{
"@id": "http://orcid.org/0000-0003-0690-4732"
},
{
"@id": "http://orcid.org/0000-0003-3960-0583"
},
{
"@id": "https://orcid.org/0000-0002-6953-3986"
}
],
"datePublished": "2015",
"identifier": "http://dx.doi.org/10.1109/TCYB.2014.2386282",
"issn": "2168-2267",
"name": "Topic Model for Graph Mining"
},
{
"@id": "http://orcid.org/0000-0002-8367-6908",
"@type": "Person",
"affiliation": "University of Technology Sydney",
"familyName": "Xuan",
"givenName": "J",
"identifier": "http://orcid.org/0000-0002-8367-6908",
"name": "J. Xuan"
},
{
"@id": "http://orcid.org/0000-0003-0690-4732",
"@type": "Person",
"affiliation": "University of Technology Sydney",
"familyName": "Lu",
"givenName": "J",
"identifier": "http://orcid.org/0000-0003-0690-4732",
"name": "J. Lu"
},
{
"@id": "http://orcid.org/0000-0003-3960-0583",
"@type": "Person",
"affiliation": "University of Technology Sydney",
"familyName": "Zhang",
"givenName": "G",
"identifier": "http://orcid.org/0000-0003-3960-0583",
"name": "G. Zhang"
},
{
"@id": "http://uts.edu.au",
"identifier": "http://uts.edu.au",
"name": "University of Technology Sydney"
},
{
"@id": "https://doi.org/10.4225/59/59e3d6d08faa9",
"@type": "Dataset",
"contact": {
"@id": "http://orcid.org/0000-0002-8367-6908"
},
"citation": {
"@id": "http://dx.doi.org/10.1109/TCYB.2014.2386282"
},
"path": "./",
"creator": [
{
"@id": "http://orcid.org/0000-0002-8367-6908"
},
{
"@id": "http://orcid.org/0000-0003-0690-4732"
},
{
"@id": "http://orcid.org/0000-0003-3960-0583"
},
{
"@id": "https://orcid.org/0000-0002-6953-3986"
}
],
"datePublished": "2018-03-10",
"description": "This demo is the sampling inference for Graph Topic Model, and more details about this model can be found in the following reference: @ARTICLE{7015568, author={J. Xuan and J. Lu and G. Zhang and X. Luo}, journal={IEEE Transactions on Cybernetics}, title={Topic Model for Graph Mining}, year={2015}, volume={45}, A Markov chain Monte Carlo (MCMC) algorithm is developed and implemented to inference the Graph Topic Model (GTM). GTM is a probabilistic graphical model for the data represented by graph structure, e.g., chemical formulas or documents.",
"hasPart": [
{
"@id": "gtm_gs.m"
},
{
"@id": "LICENSE"
},
{
"@id": "README.txt"
},
{
"@id": "test_gtm.m"
}
],
"identifier": "https://doi.org/10.4225/59/59e3d6d08faa9",
"license": {
"@id": "https://www.gnu.org/licenses/gpl-3.0.en.html"
},
"name": "GTM",
"publisher": "University of Technology Sydney"
},
{
"@id": "https://orcid.org/0000-0002-6953-3986",
"@type": "Person",
"affiliation": "University of Technology Sydney",
"familyName": "Luo",
"givenName": "X",
"identifier": "https://orcid.org/0000-0002-6953-3986",
"name": "X. Luo"
},
{
"@id": "https://www.gnu.org/licenses/gpl-3.0.en.html",
"description": "GNU GENERAL PUBLIC LICENSE\r\r\n\r\r\n\r\r\n\r\r\n\r\r\n\r\r\n\r\r\n\r\r\n\r\r\n\r\r\n\r\r\n\r\r\n\r\r\n\r\r\n\r\r\n\r\r\n\r\r\n\r\r\n\r\r\n\r\r\n\r\r\n\r\r\n\r\r\n\r\r\n\r\r\n\r\r\n\r\r\n\r\r\n\r\r\n\r\r\n\r\r\n\r\r\nVersion 3, 29 June 2007",
"identifier": "https://www.gnu.org/licenses/gpl-3.0.en.html",
"name": "GPL 3"
},
{
"@id": "test_gtm.m",
"@type": "File",
"*MISSING-FILE": "1",
"contentSize": "527",
"encodingFormat": "Plain Text File",
"fileFormat": "http://www.nationalarchives.gov.uk/PRONOM/x-fmt/111",
"filename": [],
"license": "GPL 3",
"name": "test_gtm.m"
}
],
"@context": {
"@vocab": "http://schema.org/",
"schema": "http://schema.org/",
"cat": "http://www.w3.org/ns/dcat#",
"cc": "http://creativecommons.org/ns#",
"cnt": "http://www.w3.org/2008/content#",
"ctag": "http://commontag.org/ns#",
"dc": "http://purl.org/dc/terms/",
"dcat": "http://www.w3.org/ns/dcat#",
"dcterms": "http://purl.org/dc/terms/",
"describedby": "http://www.w3.org/2007/05/powder-s#describedby",
"earl": "http://www.w3.org/ns/earl#",
"foaf": "http://xmlns.com/foaf/0.1/",
"gldp": "http://www.w3.org/ns/people#",
"gr": "http://purl.org/goodrelations/v1#",
"grddl": "http://www.w3.org/2003/g/data-view#",
"ht": "http://www.w3.org/2006/http#",
"ical": "http://www.w3.org/2002/12/cal/icaltzd#",
"license": "schema:license",
"ma": "http://www.w3.org/ns/ma-ont#",
"og": "http://ogp.me/ns#",
"org": "http://www.w3.org/ns/org#",
"owl": "http://www.w3.org/2002/07/owl#",
"prov": "http://www.w3.org/ns/prov#",
"ptr": "http://www.w3.org/2009/pointers#",
"qb": "http://purl.org/linked-data/cube#",
"rdf": "http://www.w3.org/1999/02/22-rdf-syntax-ns#",
"rdfa": "http://www.w3.org/ns/rdfa#",
"rdfs": "http://www.w3.org/2000/01/rdf-schema#",
"rev": "http://purl.org/stuff/rev#",
"rif": "http://www.w3.org/2007/rif#",
"role": "http://www.w3.org/1999/xhtml/vocab#role",
"rr": "http://www.w3.org/ns/r2rml#",
"sd": "http://www.w3.org/ns/sparql-service-description#",
"sioc": "http://rdfs.org/sioc/ns#",
"skos": "http://www.w3.org/2004/02/skos/core#",
"skosxl": "http://www.w3.org/2008/05/skos-xl#",
"v": "http://rdf.data-vocabulary.org/#",
"vcard": "http://www.w3.org/2006/vcard/ns#",
"void": "http://rdfs.org/ns/void#",
"wdr": "http://www.w3.org/2007/05/powder#",
"wdrs": "http://www.w3.org/2007/05/powder-s#",
"xhv": "http://www.w3.org/1999/xhtml/vocab#",
"xml": "http://www.w3.org/XML/1998/namespace",
"xsd": "http://www.w3.org/2001/XMLSchema#",
"AMRadioChannel": "schema:AMRadioChannel",
"APIReference": "schema:APIReference",
"Abdomen": "schema:Abdomen",
"AboutPage": "schema:AboutPage",
"AcceptAction": "schema:AcceptAction",
"Accommodation": "schema:Accommodation",
"AccountingService": "schema:AccountingService",
"AchieveAction": "schema:AchieveAction",
"Action": "schema:Action",
"ActionStatusType": "schema:ActionStatusType",
"ActivateAction": "schema:ActivateAction",
"ActiveActionStatus": "schema:ActiveActionStatus",
"ActiveNotRecruiting": "schema:ActiveNotRecruiting",
"AddAction": "schema:AddAction",
"AdministrativeArea": "schema:AdministrativeArea",
"AdultEntertainment": "schema:AdultEntertainment",
"AdvertiserContentArticle": "schema:AdvertiserContentArticle",
"AerobicActivity": "schema:AerobicActivity",
"AggregateOffer": "schema:AggregateOffer",
"AggregateRating": "schema:AggregateRating",
"AgreeAction": "schema:AgreeAction",
"Airline": "schema:Airline",
"Airport": "schema:Airport",
"AlbumRelease": "schema:AlbumRelease",
"AlignmentObject": "schema:AlignmentObject",
"AllWheelDriveConfiguration": "schema:AllWheelDriveConfiguration",
"AllocateAction": "schema:AllocateAction",
"AmusementPark": "schema:AmusementPark",
"AnaerobicActivity": "schema:AnaerobicActivity",
"AnalysisNewsArticle": "schema:AnalysisNewsArticle",
"AnatomicalStructure": "schema:AnatomicalStructure",
"AnatomicalSystem": "schema:AnatomicalSystem",
"Anesthesia": "schema:Anesthesia",
"AnimalShelter": "schema:AnimalShelter",
"Answer": "schema:Answer",
"Apartment": "schema:Apartment",
"ApartmentComplex": "schema:ApartmentComplex",
"Appearance": "schema:Appearance",
"AppendAction": "schema:AppendAction",
"ApplyAction": "schema:ApplyAction",
"ApprovedIndication": "schema:ApprovedIndication",
"Aquarium": "schema:Aquarium",
"ArriveAction": "schema:ArriveAction",
"ArtGallery": "schema:ArtGallery",
"Artery": "schema:Artery",
"Article": "schema:Article",
"AskAction": "schema:AskAction",
"AssessAction": "schema:AssessAction",
"AssignAction": "schema:AssignAction",
"Atlas": "schema:Atlas",
"Attorney": "schema:Attorney",
"Audience": "schema:Audience",
"AudioObject": "schema:AudioObject",
"Audiobook": "schema:Audiobook",
"AudiobookFormat": "schema:AudiobookFormat",
"AuthoritativeLegalValue": "schema:AuthoritativeLegalValue",
"AuthorizeAction": "schema:AuthorizeAction",
"AutoBodyShop": "schema:AutoBodyShop",
"AutoDealer": "schema:AutoDealer",
"AutoPartsStore": "schema:AutoPartsStore",
"AutoRental": "schema:AutoRental",
"AutoRepair": "schema:AutoRepair",
"AutoWash": "schema:AutoWash",
"AutomatedTeller": "schema:AutomatedTeller",
"AutomotiveBusiness": "schema:AutomotiveBusiness",
"Ayurvedic": "schema:Ayurvedic",
"BackgroundNewsArticle": "schema:BackgroundNewsArticle",
"Bacteria": "schema:Bacteria",
"Bakery": "schema:Bakery",
"Balance": "schema:Balance",
"BankAccount": "schema:BankAccount",
"BankOrCreditUnion": "schema:BankOrCreditUnion",
"BarOrPub": "schema:BarOrPub",
"Barcode": "schema:Barcode",
"Beach": "schema:Beach",
"BeautySalon": "schema:BeautySalon",