cnn_policy.py 2.3 KB
Newer Older
John Schulman's avatar
John Schulman committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
from baselines.common.mpi_running_mean_std import RunningMeanStd
import baselines.common.tf_util as U
import tensorflow as tf
import gym
from baselines.common.distributions import make_pdtype

class CnnPolicy(object):
    recurrent = False
    def __init__(self, name, ob_space, ac_space, kind='large'):
        with tf.variable_scope(name):
            self._init(ob_space, ac_space, kind)
            self.scope = tf.get_variable_scope().name

    def _init(self, ob_space, ac_space, kind):
        assert isinstance(ob_space, gym.spaces.Box)

        self.pdtype = pdtype = make_pdtype(ac_space)
        sequence_length = None

        ob = U.get_placeholder(name="ob", dtype=tf.float32, shape=[sequence_length] + list(ob_space.shape))
21

John Schulman's avatar
John Schulman committed
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
        x = ob / 255.0
        if kind == 'small': # from A3C paper
            x = tf.nn.relu(U.conv2d(x, 16, "l1", [8, 8], [4, 4], pad="VALID"))
            x = tf.nn.relu(U.conv2d(x, 32, "l2", [4, 4], [2, 2], pad="VALID"))
            x = U.flattenallbut0(x)
            x = tf.nn.relu(U.dense(x, 256, 'lin', U.normc_initializer(1.0)))
        elif kind == 'large': # Nature DQN
            x = tf.nn.relu(U.conv2d(x, 32, "l1", [8, 8], [4, 4], pad="VALID"))
            x = tf.nn.relu(U.conv2d(x, 64, "l2", [4, 4], [2, 2], pad="VALID"))
            x = tf.nn.relu(U.conv2d(x, 64, "l3", [3, 3], [1, 1], pad="VALID"))
            x = U.flattenallbut0(x)
            x = tf.nn.relu(U.dense(x, 512, 'lin', U.normc_initializer(1.0)))
        else:
            raise NotImplementedError

        logits = U.dense(x, pdtype.param_shape()[0], "logits", U.normc_initializer(0.01))
        self.pd = pdtype.pdfromflat(logits)
        self.vpred = U.dense(x, 1, "value", U.normc_initializer(1.0))[:,0]

        self.state_in = []
        self.state_out = []

        stochastic = tf.placeholder(dtype=tf.bool, shape=())
        ac = self.pd.sample() # XXX
        self._act = U.function([stochastic, ob], [ac, self.vpred])

    def act(self, stochastic, ob):
        ac1, vpred1 =  self._act(stochastic, ob[None])
        return ac1[0], vpred1[0]
    def get_variables(self):
52
        return tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, self.scope)
John Schulman's avatar
John Schulman committed
53
54
55
56
57
    def get_trainable_variables(self):
        return tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, self.scope)
    def get_initial_state(self):
        return []