Skip to content
GitLab
Menu
Projects
Groups
Snippets
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Menu
Open sidebar
13530934
100-Days-Of-ML-Code
Commits
d16934c9
Unverified
Commit
d16934c9
authored
Jul 19, 2018
by
Avik Jain
Committed by
GitHub
Jul 19, 2018
Browse files
Create Day 13 SVM.md
parent
439a7df1
Changes
1
Hide whitespace changes
Inline
Side-by-side
Code/Day 13 SVM.md
0 → 100644
View file @
d16934c9
# Day 13 | Support Vector Machine (SVM)
## Importing the libraries
```
python
import
numpy
as
np
import
matplotlib.pyplot
as
plt
import
pandas
as
pd
```
## Importing the dataset
```
python
dataset
=
pd
.
read_csv
(
'Social_Network_Ads.csv'
)
X
=
dataset
.
iloc
[:,
[
2
,
3
]].
values
y
=
dataset
.
iloc
[:,
4
].
values
```
## Splitting the dataset into the Training set and Test set
```
python
from
sklearn.cross_validation
import
train_test_split
X_train
,
X_test
,
y_train
,
y_test
=
train_test_split
(
X
,
y
,
test_size
=
0.25
,
random_state
=
0
)
```
## Feature Scaling
```
python
from
sklearn.preprocessing
import
StandardScaler
sc
=
StandardScaler
()
X_train
=
sc
.
fit_transform
(
X_train
)
X_test
=
sc
.
transform
(
X_test
)
```
## Fitting SVM to the Training set
```
python
from
sklearn.svm
import
SVC
classifier
=
SVC
(
kernel
=
'linear'
,
random_state
=
0
)
classifier
.
fit
(
X_train
,
y_train
)
```
## Predicting the Test set results
```
python
y_pred
=
classifier
.
predict
(
X_test
)
```
## Making the Confusion Matrix
```
python
from
sklearn.metrics
import
confusion_matrix
cm
=
confusion_matrix
(
y_test
,
y_pred
)
```
## Visualising the Training set results
```
python
from
matplotlib.colors
import
ListedColormap
X_set
,
y_set
=
X_train
,
y_train
X1
,
X2
=
np
.
meshgrid
(
np
.
arange
(
start
=
X_set
[:,
0
].
min
()
-
1
,
stop
=
X_set
[:,
0
].
max
()
+
1
,
step
=
0.01
),
np
.
arange
(
start
=
X_set
[:,
1
].
min
()
-
1
,
stop
=
X_set
[:,
1
].
max
()
+
1
,
step
=
0.01
))
plt
.
contourf
(
X1
,
X2
,
classifier
.
predict
(
np
.
array
([
X1
.
ravel
(),
X2
.
ravel
()]).
T
).
reshape
(
X1
.
shape
),
alpha
=
0.75
,
cmap
=
ListedColormap
((
'red'
,
'green'
)))
plt
.
xlim
(
X1
.
min
(),
X1
.
max
())
plt
.
ylim
(
X2
.
min
(),
X2
.
max
())
for
i
,
j
in
enumerate
(
np
.
unique
(
y_set
)):
plt
.
scatter
(
X_set
[
y_set
==
j
,
0
],
X_set
[
y_set
==
j
,
1
],
c
=
ListedColormap
((
'red'
,
'green'
))(
i
),
label
=
j
)
plt
.
title
(
'SVM (Training set)'
)
plt
.
xlabel
(
'Age'
)
plt
.
ylabel
(
'Estimated Salary'
)
plt
.
legend
()
plt
.
show
()
```
<p
align=
"center"
>
<img
src=
"https://github.com/Avik-Jain/100-Days-Of-ML-Code/blob/master/Other%20Docs/ets.png"
>
</p>
## Visualising the Test set results
```
python
from
matplotlib.colors
import
ListedColormap
X_set
,
y_set
=
X_test
,
y_test
X1
,
X2
=
np
.
meshgrid
(
np
.
arange
(
start
=
X_set
[:,
0
].
min
()
-
1
,
stop
=
X_set
[:,
0
].
max
()
+
1
,
step
=
0.01
),
np
.
arange
(
start
=
X_set
[:,
1
].
min
()
-
1
,
stop
=
X_set
[:,
1
].
max
()
+
1
,
step
=
0.01
))
plt
.
contourf
(
X1
,
X2
,
classifier
.
predict
(
np
.
array
([
X1
.
ravel
(),
X2
.
ravel
()]).
T
).
reshape
(
X1
.
shape
),
alpha
=
0.75
,
cmap
=
ListedColormap
((
'red'
,
'green'
)))
plt
.
xlim
(
X1
.
min
(),
X1
.
max
())
plt
.
ylim
(
X2
.
min
(),
X2
.
max
())
for
i
,
j
in
enumerate
(
np
.
unique
(
y_set
)):
plt
.
scatter
(
X_set
[
y_set
==
j
,
0
],
X_set
[
y_set
==
j
,
1
],
c
=
ListedColormap
((
'red'
,
'green'
))(
i
),
label
=
j
)
plt
.
title
(
'SVM (Test set)'
)
plt
.
xlabel
(
'Age'
)
plt
.
ylabel
(
'Estimated Salary'
)
plt
.
legend
()
plt
.
show
()
```
<p
align=
"center"
>
<img
src=
"https://github.com/Avik-Jain/100-Days-Of-ML-Code/blob/master/Other%20Docs/test.png"
>
</p>
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment